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Abstract 

 

In this paper, derivative security building blocks of constant risk (omega) are identified 

which satisfy the Black and Scholes equation and which, in aggregate, can be combined to 

form a wide class of derivative structures; once in place the elemental options, which we 

term “atoms”, need only modest rebalancing.  A user-friendly technology based on 

Legendre techniques is introduced to ascertain the appropriate combination of derivative 

atoms needed to assemble more complex risk profiles.  Extension of this solution 

technique to a multifactor world is outlined, with Robert Merton's valuation of options 

incorporating stochastic interest rates used as an illustration. 
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1. Introduction:  The Engineering of Things 

 

Most of us view engineering as the building of things from smaller things.  Furthermore, 

once the smaller things are in place, they are relatively invariant – there is no dynamic 

adjustment of the parts to maintain the whole.  Nature, the master engineer, also appears to 

be quite satisfied with this scheme; there apparently is no need to continuously change the 

proportion of hydrogen and oxygen atoms in maintaining a water molecule.  Yet, when we 

turn to “Financial Engineering”, the state of play changes dramatically.  The building 

blocks are often combinations of small things and bigger, complex things and the 

proportion of the components varies substantially over the lifetime of the structure 

synthesized.  For example, the hedging of stock options involves the dynamic rebalancing 

of cash, stock, and often more complex instruments with appropriate nonlinear behavior.  

In brief, financial engineering conveys only a limited sense of putting together elemental 

stable parts into building a coherent whole. 

 This also has implications for the teaching of Derivative Securities at the graduate 

level.  In particular, it is common to carefully develop the analytics leading to the Black 

and Scholes partial differential equation and then fully stop.  At this point various 

specialized approaches and option valuations are presented to the students who are then 

told that if they differentiate diligently for a long enough period the given valuation will, 

in fact, satisfy the Black and Scholes equation.  As a result, the students gain only 

marginal exposure to hedging and synthesizing various risk profiles and the art of financial 

engineering/risk management is relegated to a very special breed, the rocket scientist. 

In this article, we introduce a simple mathematical scheme that addresses both 

issues raised above.  A set of derivative security building blocks is identified.  These 

atomistic options can then be combined to form a wide class of derivative structures and 

once in place the elemental options which we term “atoms” need only modest rebalancing.  

Furthermore, the technology is sufficiently straightforward that it can be easily introduced 

as a teaching tool to the advanced MBA.  Let’s now turn to a search for our derivative 

“atoms” and the related periodic table.   

   

2.   Constant Risk Derivatives:  The Atoms 

  

The non-diversifiable risk of a stock with respect to an index is often measured by the 

quantity beta.  Similarly, the beta of a derivative security with respect to its underlying 
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instrument is termed the omega of the derivative1.  In a single factor world, this measure 

of risk is simply the elasticity of the derivative security which we will identify as a stock 

for the purposes of discussion.  Let’s ask ourselves if there is a class of derivative 

securities with a constant omega.  To confuse matters we label such a constant omega as n. 

Therefore, we search for a derivative security, ( ),nA S t , which satisfies both the Black and 

Scholes equation and the constant elasticity condition: 

    with  constantn

n

AS
n n

A S


=


  (1) 

  

Here ( ),nA S t  is the derivative value and S   is the value of the associated stock.  The 

solution to (1) is simply: 

 ( ) ( ), n

nA S t K t S=   (2) 

where ( )K t   is a function only of time. 

 

Substitution of (2) back into the Black and Scholes equation2 leads to an ordinary 

differential equation of order one, which can be readily solved, so that: 

 ( ) ( )
( ) ( )

2

1 1
2

0
n n n r t

K t K e

 
− − + − 
  =   (3) 

 

Where   and r   are the volatility and the risk-free rate respectively.  Combining factors 

and setting ( )0 1K =  , the derivative atoms, ( ),nA S t are: 

 ( )
( ) ( )

2

1 1
2

,
n n n r t

n

nA S t e S

 
− − + − 
  =   (4) 

 

We are using the term “derivative atoms” interchangeably to mean either the function  

( ),nA S t or the derivative security ( ),nCA S t T−   with a payoff of nCS   at time T  (C is a 

constant of calibration). 

 

 
1 Of course, the Beta of a derivative security with respect to the market is simply Omega times the Beata of 

the underlying stock. 

 

2 For reference we restate the Black and Scholes equation:  
2

2 2

2

1

2

f f f
rS S rf

t S S


     
+ + =   
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Although the equation (4) is true for any real number n, let’s for the moment specialize to 

integral n’s.  Later we will relax this constraint.  The first few atoms of the infinite 

sequence are set forth in the following table: 

                                                            

Table 1:  Atoms 

n ( ),nA S t
 

0 rte  

1 S   

2 ( )2
2r t

e S
− +

  
3 ( )23 2 3r t

e S
− +

 
● ● 

● ● 

● ● 

 

Notice that the first two atoms of constant risk are simply cash and stock!  Thus, the full 

“periodic table” of ( ),nA S t  is the natural extension of cash and stock, the normal 

participants in the hedging drama.  Before moving on we note that the third atom  

( )2 ,A S t is a derivative of “almost” constant gamma.  In particular: 

 
( )22

2

2
2

r tA
e

S

− +
 = =


  (5) 

 

For typical values of .3 =  and .1r =   , we have: 

 
.192 te− =   (6) 

 

which has a slow relaxation time of about five years; thus it takes about five years for   to 

fall to 
1

e
th of its original value.  

In sum, we have found a set of atoms of constant risk that blend seamlessly into the 

existing dynamic hedging technology.  The next issue to review is whether these atoms 

form a complete set.  In other words can we combine these atoms in various proportions to 

build a wide class of derivative structures and once in place will rebalancing of the 

proportions be required? 
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3. Enter Weierstrass:  A Complete Set 

Since ( ),nA S t are solutions to the B-S equation, linear combinations of ( ),nA S t will also 

satisfy the classic PDE.  Accordingly, for any selection of constant coefficients, na , the 

following expression will also satisfy the Black and Scholes equation: 

 
( ) ( )

2

1 1
2

0

m n n n r t
n

n

n

a e S

 
− − + − 
  

=

   (7) 

The question, “Do we have enough atoms to build most derivative molecules” boils down 

to the following.  If ( ),f S t  is the value of the derivative security, can we find a set of 

constant coefficients, na , in expression (7) such that ( ),f S t can be approximately 

arbitrarily closely and uniformly in a closed interval  1 2,S S  ?  Fortunately, the answer is 

yes. 

Expression (7) is a power series in S and at first glance one would surmise that for large 

enough m, the sequence of polynomials would effect and appropriate approximation of the 

derivative payoff, ( ),f S t , at expiration (time T).  This surmise is confirmed in the 

Weierstrass approximation theorem of 1885.  Because of its importance in the present 

context, a statement of the theorem is set forth below. 

Weierstrass Theorem:  Let ( )f x  be a continuous function on the interval  ,c d .  Given an  

0  , we can find a polynomial ( )mP x  (of sufficiently high degree m) for which 

 ( ) ( )            mf x P x c x d−      

 

Thus the na ’s exist and the approximation of ( ),f S T , with T being the expiration time, 

by expression (7) works with the sole condition that ( ),f S T  be a continuous function 

over the closed interval  ,c d .  Later, even the continuity condition will be relaxed.   
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In sum, carefully selected combinations of the derivative atoms will approximate as 

closely as desired any continuous derivative payoff while concurrently being a solution of 

the Black and Scholes equation.  This also means that once these combinations (the na ’s) 

are determined the atoms need not be rebalanced over the lifetime of the derivative 

security.  Since the na ’s exists, the next step is to find them.  The process of extracting the 

na ’s we term spectroscopy since a spatial frequency composition is being determined.  

Before moving to the full spectroscope design, let’s explore a few simple examples with 

exact solutions to extract the major themes.   

 

4. Derivative Atoms as a Teaching Tool:  Some Simple Examples 

Two examples will suffice to give a flavor of the approach.  First, let’s begin with valuing 

a forward contract, ( ),f S t , with a payoff at expiration (time T) of: 

 

 ( ),f S T S K= −   (8) 

From our earlier discussion we attempt to reconstruct ( ),f S t  as: 

 ( )
( ) ( )

2

1 1
2

,
n n n r t

n

n

n

f S t a e S

 
− − + − 
  =   (9) 

   

At expiration, the contract value (see table of atoms) is: 

 ( )
( )2

2

0 1 2, ...
r Trtf S T S K a e a S a e S

− +
= − = + + +   (10) 

 

For equation (10) to hold for all S, the coefficients must satisfy: 

 
0

1 1

rta e K

a

= −

=
  (11) 

and all other na ’s are zero.  Substitution of these coefficients into equation (9) yields: 

 ( ) ( )
,

r T t
f S t S Ke

− −
= −   (12) 

 

which is the standard formula for a forward contract on a stock with no dividend. 
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Similarly, let’s quickly value a derivative security with a parabolic payoff of: 

 ( ) ( )
2

,f S T S K= −   (13) 

As in the case of the forward contract, we can express the derivative payoff as: 

 

 ( )
( )2

2 2 2

0 1 22 ...
r TrtS K S K a e a S a e S

− +
− + = + + +   (14) 

 

Equating coefficients of 
nS  on both sides of equation (14) and substituting 0a , 1a , and 2a  

into our basic equation (9), the resulting valuation expression for this derivative is: 

   

 ( ) ( ) ( )( )2
2 2, 2

r T tr T t
f S t K e KS e S

 + −− −
= − +   (15) 

  

Although illustrative, these examples mask a richer technology required in extracting the 

'na s  in more general payoff profiles.  Accordingly, the design of the spectroscope is now 

addressed, after which it will be used to examine a European Call. 

 

5.    The Spectroscope:  Basic Design 

The task at hand is to find coefficients nb  of the polynomial ( )
0

m
n

m n

n

P S b S
=

=  such that if 

is as close as desired to a continuous payoff function ( ),f S T on the interval  ,c d .   Then 

the coefficients in equation (9) will be given by: 

 

 
( ) ( )

2

1 1
2

n n n r T

n na e b

 
− + − 

  =   (16) 

  

To proceed with the analytic extraction of the coefficients ( nb ’s and 'na s ), we define a 

measure of “closeness” which is fraternal twin of that used in the Weierstrass Theorem.  

Namely, define: 

 

 ( ) ( )
2

, ,
b

a
f S T f S T dS      (17) 

 

Then the extraction problem may be restated as finding an mth degree polynomial, ( )mP S  

following the prescription: 

 

 
2

0

min
( , ) ( )

, ,
m

m

f S T P S
b b

−   (18) 
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Here the function ( ),f S T  and the polynomial of degree m are fixed and the minimization 

is performed over the coefficients nb .  The problem has a unique solution, ( )*

mP S , and as 

m gets larger the approximation improves.  Also, in this modified measure of closeness, 

we can relax the requirement of continuity on  ( ),f S T do that it only be sufficiently 

integrable. 

 

This problem has a simple but elegant classical solution in the form of Legendre 

Polynomials.  If we let ( )nq S  be the normalized orthogonal Legendre Polynomial of 

degree n on  ,c d  , then ( )*

mP S  is the polynomial3.     

 ( ) ( ) ( ) ( )*

0

,

bm

m n n

n a

P S f S T q S dS q S
=

 
=  

 
    (19) 

 

and it is subsequently an easy matter to rewrite tis expression I terms of powers of S which 

will do in the example below.  The series (19), called the truncated Fourier expansion for  

( ),f S T converges uniformly on  ,c d  in the limit as m→ . 

 

We now illustrate those computational procedures with the example of a European Call.  

 

6. Illustration: The European Call 

 

Let’s walk through a simple calculation to arrive at the atomic structure of a European Call 

with a payoff at expiration of ( ) ( ), 100,0f S T Max S= − . 

 

Following the prescription set forth in equation (1), we list for reference the first few 

normalized Legendre Polynomials, ( )nq S , which are orthonormal on  1,1−  .   

 

 
3 See for example, Philip J. Davis, Interpolations and Approximation, Blaisdell Publishing Company, New 

York, 1965. 
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To convert to orthonormal polynomial, ( )nq S , on  ,c d , use the transformation: 

 ( )
( )2

1n n

S c
q S q

d c

− 
= − 

− 
  

  

In this example 0c =  and 200d = .  Then equation (19) asks for the computation of 

( ) ( )
200

0
100,0 nMax S q S dS−  which is straightforward.  Accordingly, the first five 

polynomials  ( )*

mP S approximating the payoff ( ),f S T  are4: 

 

( )* :   Legendre FormnP S   

n  

0 ( )035.36q S   

1 ( ) ( )0 135.36 40.82q S q S+  

2 ( ) ( ) ( )0 1 235.36 40.82 19.76q S q S q S+ +  

3 ( ) ( ) ( ) ( )0 1 2 335.36 40.82 19.76 0q S q S q S q S+ + +  

4 ( ) ( ) ( ) ( ) ( )0 1 2 3 435.36 40.82 19.76 0 4.419q S q S q S q S q S+ + + −  

 

 

 

 

 

 
4 Note: All coefficients are rounded to four significant places. 



10 

( )* :   Unraveled FormnP S   

n  

0 25.00  

1 ( )25.00 50.00 /100S− +  

2 ( ) ( )
2

6.250 43.75 /100 46.87 /100S S− +  

3 ( ) ( ) ( )
2 3

6.250 43.75 /100 46.87 /100 0 /100S S S− + +  

4 ( ) ( ) ( ) ( )
2 3 4

3.125 50.00 /100 164.1 /100 164.1 /100 41.02 /100S S S S− + − + −  

 

 

A graphical comparison of the payoff profile with ( )*

2P S  and ( )*

4P S  are displayed below: 

 

 

( )*
2

 and European Call PayoffP S  
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( )*
4

 and European Call PayoffP S  

 

 

The rapid convergence to ( ),f S T with only a fourth degree polynomial is clear and 

relatedly only three atoms in addition to the traditional cash and stock are needed to mimic 

( ),f S T to the degree of closeness specified by ( )*

4P S . 

The unraveled form of  ( )*

nP S may then be used directly (see equation 9) to obtain 

approximations for ( ),f S t .  For example, for the fourth degree approximation with 

0 200S   and 0 t T  : 

 

 
( ) ( ) ( )

( )( )
( )

( )( )
( )

( )( )
( )

2

2 2

2

3 2 6 33 4

, 3.125 50.00 /100 1.64.1 /100

164.1 /100 41.02 /100

r T tr t T

r T t r T t

f S t e S e S

e S e S



 

+ −−

+ − + −

 − + −

+ −

  (20) 

 

 

and the five derivative atoms needed to synthesize ( ),f S T  reflect within a calibration 

constant, the separate terms in equation (9).  Again, the foregoing procedure may be 
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viewed as a solution technique for derivatives as well as a motivation for the market to 

trade derivative atoms with payoffs proportional to 
nS .  A few such atoms can mimic the 

valuation of dozens of vanilla and exotic options of a given underlying security to a degree 

where investors would surely be indifferent between the original derivative and atomic 

cocktail.  As demonstrated, the spectroscope fundamentals are transparent, and it is an 

easy task to design appropriate user friendly software for the graduate student or 

practitioner to extract the  a ’s (the number of each type of atom to form a more complex 

derivative molecule).   

 

Having covered the spectroscope basics, let’s now briefly look at some extensions of the 

theme.  

 

7. Spectroscopic Extensions 

 

The present approach to the design of the spectroscope allows for a number of extensions 

and generalizations. First, the function ( ),f S T  need not be continuous but merely 

sufficiently integrable5 so that one can even approximate Heaviside functions using this 

technology.  

 

Secondly, the approximation of ( ),f S T can be extended from polynomials to functions of 

the form: 

nc

na x  

where nc  are simply real numbers.  A powerful theorem due to Müntz6 provides for 

functions ( ),f S T  which are in 2L .  It only requires that nc  are all distinct within a finite 

interval, say  1, 2nc  , to obtain appropriate convergence to ( ),f S T .  As an illustration, 

the minimization problem articulated in equation (18) can be explicitly solved by also 

allowing the powers of S as well as the coefficients to be variables.  For the case of the 

 

5 Specifically, ( ),f S T  must be measurable and ( ),

b
p

a

f S T dS  must exist in which case  ,pf L c d  

for some 1 p   .  That is the case for functions with mild discontinuities.  
6 See Davis, page 272, for a complete statement of the Müntz theorem. 
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European Call described earlier, the approximation with only two terms (modified atoms) 

is7   

( )
1.8155 1.8231

ax 100,0 3,984.38 3,993.83
100 100

S S
M S

   
− − +   

   
  

Note that  1, 2nc  . 

  

Solving (18) as a minimization problem also allows us great flexibility in adding 

constraints.  We could require the graph of the approximation to pass through the origin; 

the point S=100, f=0, the points S=200, f=100, or some other combination of these.  We 

can also add restrictions on the shape of the approximation such as monotonicity for 

example. 

One last extension is particularly noteworthy.  The rationale for a constrained 

minimization often requires the approximation to pass through points where the payoff is 

highly likely to occur.  This objective may be translated in general as follows:  If the 

probability distribution of likely outcomes of f on  ,c d  is ( )w S , then one would like the 

approximations to be closer to f where the probability of such outcomes is high.  Then the 

natural generalization of the norm of f (equation (17)) is:  

 

  

 ( ) ( ) ( )
2 2

d

w c
f S f S w S dS=    (21) 

 

where ( )  0   ,w S S c d    and ( ) 0
d

c
w S dS  .  Recall that in the earlier formulation 

equal weights are given to each point in the approximation.  Then all of the prior results 

can be obtained either by generating orthogonal polynomials8 or directly through 

minimization.  The topics are discussed in more detail in our forthcoming paper. 

 

 

 

 
7 This approximation technique with two kinds of atoms is as good as the previous technique with four 

atoms.  In our forthcoming paper we discuss various different kinds of atoms. 

8 Certain functions give rise to well-known classical polynomials.  For example, ( ) ( )
1

2 21w S S
−

= −  give 

rise to the Chebyshev polynomials. 
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8.   Multifactor Considerations 

 

The extension of the foregoing schema to a multi-factor world is straightforward and only 

the essential elements will be outlined here using the vehicle of a two-factor derivative 

security.   Let the factors,  1S  and 2S , be standard Brownian processes, so that: 

 

 

1
1 1 1

1

2
2 2 2

2

dS
dt dz

S

dS
dt dz

S

 

 

= +

= +

  (22) 

 

and call the value of the derivative security ( )1 2, ,f S S t .  The two-factor PDE for f is then:  

 

 

2 2 2
2 2 2 2

1 2 1 1 2 2 1 2 1 22 2

1 2 1 2 1 2

1 1

2 2

f F f f f f
rS rS S S S S rf

t S S S S S S
    

     
+ + + + + =

      
  (23) 

 

where   is the correlation coefficient between the natural logarithms of the returns on  1S  

and 2S .  It is natural to search for two-factor derivative atoms of the form: 

 

 ( ) ( ) 1 2

m n

mn mnA t K t S S=   (24) 

 

Following the procedure fully analogous to the one-factor methodology, the expression for 

( ),m nA t  is introduced into the two-factor Black and Scholes equation (equation (23)).  The 

resulting first order differential equation can be readily solved for ( )mnK t , again calling 

( )0 1mnK = , the two-factor derivative atoms are:  so that the two-factor atoms are: 

 ( )
( ) ( ) ( )2 2

1 2 1 2

1 1
1 1 1

2 2

1 2 1 2, ,
m m n n mn n m r t

m n

mnA S S t e S S
    

 
− − + − + + + − 
 =   (25) 

 

 

 

Restricting for now (m,n) to integer pairs, the first few atoms may be depicted as: 
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Finally, the general solutions of equation (23), ( )1 2 ,f S S t  on a closed intervals 1c S d   

and 2g S h   can be represented as: 

 ( ) ( )1 2 , , 1 2, , , ,m n m n

m n

f S S t a A S S t=   (26) 

 

with ,m na  being constant.  The major conceptual features are quite parallel to the one-

factor case.  The multifactor spectroscope design, which is described in our forthcoming 

paper, also closely tracks its one-factor counterpart.  

 

 

An interesting application of the two-factor approach (with a few variations on the theme) 

is to revisit Robert Merton’s valuation of options incorporating stochastic interest rates9.  

Merton’s basic PDE s a special case of equation (23) with r set to zero, identification of 2S  

with the discount bond P and allowing 1 2, ,    to be time dependent.  The well-known 

zero investment criteria for the hedge portfolio is: 

 
f f

f S P
S P

 
= +

 
  (27) 

 
9 Merton, R. C.  1973.  “Theory of Rational Option Pricing”, Bell Journal of Economics and Management 

Science, 4, Spring, 141-183. 
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Applying this condition to ( )1 2, ,f S S t  in equation (23) or equivalently to ( ),m nA t  in 

equation (25) uncovers the coupling of m and n:m+n=1.  This simple relationship is the 

basis of normalization procedures introduced by Merton in the mid 70’s.  Namely, 

substitution of this m,n connection into equation (25) reveals: 

 

 

( ) ( )

( )

1

1 2 ,1

,1

, , m m

m m m

m

m

m m m

f S S t a K t S P

f S
a K t

P P

− +

−

−

=

 
=  

 





  (28) 

 

Thus, the two-factor atoms provide a user-friendly introduction to the well-known 

homogeneity property depicted above.  Further, requiring that ( ), ,f S P t  satisfy Merton’s 

PDE allows for a one-step determination of ( ), 1m mK t−  with the results that 
f

P
 (equation 

(28) may now be specified as: 

 

( )

( ) ( ) ( ) ( ) ( )( )

2

1
2

2 2 2

1 1 2 2

0

 where V 2

mV
m m t

m

m

t

f S
a e

P P

t s s s s s ds    

− −  
=  

 

 − +





  (29) 

 

It is transparent from the above that this solution can be mapped into the one-factor case 

(see, for example, equation (9)) with 
2 2,  ,  rt S

P e S V
P

→ → → , as Merton demonstrated 

over 40 years ago. 

 

9.     Summary and Market Challenge 

 

In this article, elementary derivative functions (atoms) are identified that satisfy the Black 

and Scholes equation and which, in aggregate, can be combined to form a wide class of 

derivative security risk profiles.  This solution technique for valuing derivatives has the 

potential for serving dual roles.  As a teaching tool, the analytics are readily accessible at 

the intermediate graduate level of study and could be a useful sequel or chapter to standard 

texts introducing the Black and Scholes PDE.  If, on the other hand.  the market elected to 

trade even a handful of these “atoms” for a given underling security or index, both 
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speculators and hedgers could benefit.  Speculators could carefully select their risk class 

with a derivative instrument bearing a constant elasticity relative to the underlying 

throughout the life of the contract.  In turn the hedger would find a user-friendly 

technology based on Legendre techniques to assemble combinations of the derivative 

atoms to form more complex derivative risk profile (molecules), once in place, the 

synthesized structures require only limited rebalancing.  In sum, the challenge to the 

market is simply this … issue these derivative atoms and provide the building blocks of a 

true financial “engineering of things.”  

 


