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Abstract 
 
 Some reinsurers use optimization procedures to generate underwriting portfolios, 
maximizing expected returns which are perfectly aligned with their stated risk 
preferences. Similar objectives apply to those who use simulation or DFA techniques. 
However, beyond the optimal portfolio itself, optimizers as part of their output also 
generate marginal economic signals, such as “implied” or “risk adjusted” probabilities 
which are important but underused and often misunderstood management tools. The 
purpose of this paper is to further illustrate the power of those economic signals.  
 In an earlier paper4 we illustrated how implied or risk-adjusted probabilities from 
optimal solutions may be derived and used in a simple single risk zone example. In this 
paper we continue the same simplifying universe but with multiple risk zones. We then 
use the marginal outputs to illustrate how to price indifference points for traditional 
retrocession purchases, which complement the optimum portfolio. In addition, we show 
how the implied probabilities may be used to allocate retrocession costs to the respective 
zones. Of course, allocating retrocession costs is an important sub-species of allocating 
capital costs in general. Actually we also believe the marginal outputs are the key to 
unlocking general capital allocation decisions. 
 An important part of that optimization and allocation process is the articulation of 
risk preferences of the optimizer. Implied or risk adjusted probabilities contain, the DNA, 
so to speak, of those risk preferences. That is why they are the appropriate metrics to use 
in allocation decisions. Importantly, in this paper we also begin some empirical exercises 
to reveal the risk preferences of reinsurers. In particular, we examine how the risk 
preferences of multi-line reinsurance companies are delegated to their cat reinsurance line 
and how that compares with the risk preferences of mono-line cat reinsurers. 
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4  An Introduction to the Benefits of Optimization Models for Underwriting Portfolio Selection, Jerome 
Kreuser and Morton Lane, Proceedings of the 28th International Congress of Actuaries, Paris, June 2006. 



 
 
 
 
Introduction 
 
 In our previous paper on extracting the power and value of implied probability 
outputs from optimizing5 solutions to selecting underwriting portfolios, we provided an 
extensive numerical illustration using a single risk zone, Florida wind. The general 
mathematical model was given, together with its dual, to provide a basis for our 
computations, however we felt that numerical illustration of concepts was necessary to 
promote more general understanding. In this paper we continue the practice of numerical 
illustration6, albeit expanded to three risk zones, with the purpose of disentangling the 
separate effects of those zones. In the process we hope to show how implied probabilities 
can be used to help allocate retrocessional costs to other zones. 
 To the extent that retrocession costs are allocated within a company, who should 
pick them up? If the retrocession is purchased to cover a whole book of business it is a 
cost and a benefit to each division. But who should pay that cost, if it is to be allocated to 
the divisions, and how much will that affect the profitability of the various divisions? 
Some divisions will utilize the potential recoveries more than others. Some expect to 
make more recoveries than others. So a typical corporate response is to allocate the cost 
according to expected recoveries. However, as we will illustrate, that allocation takes no 
account of the fact that certain outcomes are less desirable to management than others. It 
contains no allowance for management’s risk preferences. Implied probabilities, on the 
other hand, specifically contain information about risk preference. Using them in the 
allocation process is more appropriate. As we will illustrate allocation should be by risk 
adjusted expected losses, not by simple expected loss. That way the division causing the 
least desirable outcomes should be the one picking up the major part of the cost. 
 Then again when allocations are made on this basis what does that say about the 
profitability of each division. It will certainly be different from allocation done on a 
simple expected loss basis. 
 Now allocating retrocessional cost is not a million miles away from the question 
of allocating capital to divisions. After all, retrocession is a form of capital. The 
allocation of retrocessional costs, therefore, gives insight into the allocation of capital as 
a whole.  
 We begin by repeating the structure of the general model before diverting to the 
numerical illustration.  
 
The Problem 
                                                 
5 The optimization model utilized herein is a proprietary model system – RisKontroller ReALTM  
(RisKontroller Reinsurance Asset Liability Optimizer). The approach embedded in RisKontroller ReAL, is 
Dynamic Stochastic Programming (DSP), which can be used in a variety of applications.  Other examples 
of Dynamic Stochastic Programming applications can be found in Ziemba and Mulvey (1998). 
 
6 The numerical data used in this illustration is not current. It was representative prior to the model 
revisions post Katrina, and was provided by AIR Worldwide Ltd. The post Katrina data, either long term or 
short term is now much different from the above. 



 
 The basic problem is to maximize expected return by selecting among a set of 
deal alternatives. The environment for the selection is a risky one in which each deal can 
have multiple outcomes, hence the selected portfolio can have a variety of outcomes. 
Some of these outcomes are less desirable than others. Management expresses its risk 
preference by stating certain restrictions for the potential portfolio outcomes. Typically 
these are Value at Risk (a.k.a. VaR) constraints, or Conditional Value at Risk7 (a.k.a. 
CVaR) constraints. In addition, limits are placed on the practical deal sizes, whether 
assumed or ceded. The model inputs and decision variables are listed below. 
 

 
 

 
 
Algebraically the optimizing problem can be expressed as: 
 
 

                                                 
7 Conditional Value at Risk is also known as Tail Value at Risk (TVaR). 

Decision Variables Determined by Model  
Name Identification 

kα  Alpha value for risk k, which turns out to be VaR for active 
constraints 

jdeal  Amount of premium of deal j written  

0funds  Beginning period funds net of capital 
1ifunds  End-of-period funds net of capital in scenario i 

igains  Gains from recoveries in scenario  i 

ilosses  Losses in scenario i 

jretro  Amount of premium of deal j ceded 

,k iz  Excess loss over VaR of funds in scenario i for risk level k 

 

Model Inputs 
Name Identification 
bda  Bid/ask spread. 

kc  Confidence level expressed as a decimal for risk level k 

capital  Starting capital 

kcvar  Percent limit on loss of capital for risk level k 

,i jloss  Unit loss of deal j in scenario i 

jprice  Price of deal j as a percent 

iρ  Probability of scenario i 

rate  Rate of return on investments 

tm  Percentage of capital as limit on total ceded premiums 

trs  Transaction costs as a percent 
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Equations (2), (3), and (4) can be collapsed into one but we keep them separate here for 
ease of exposition. 
 

(5)                                            Limit on retrocessions as a % of capitalj
j J

retro tm capital
∈

≤ ×∑  

 
 

(6) 
( ) ( )

,

,

1 0                               Value of excess loss by scenario i

1   1                k CVaR constraints

i k k i

i k i k k k k
i I

funds z

z c c cvar capital

α

ρ α
∈

− − − ≤

+ − ≤ − ×∑
 

 
 

(7) 

j

j

,

Bounds on deals and non-negativity constraints

 0    deal limit                        Limit on deal

0     retro limit                Limit on retrocession
0                          N

j

j

k i

deal

retro
z

≤ ≤

≤ ≤

− ≤ on-negativity constraint on excess loss
0, 1 ,    can otherwise take any value.i kfunds funds α

 



We now begin identification of a specific numerical example to illustrate the 
optimizing features of our general model.  
 
The Deal Opportunities 
 
 We assume a world of three wind zones: Florida, Georgia to Maine, and the Rest 
of the US. These we label FLA, GEO and RUS. In addition we allow the possibility of 
covers for Nation Wide Wind (NWW) which allows covers to be obtained covering the 
whole country, i.e., covering wind in FLA, GEO or RUS. Each of the deals is assumed to 
be of Industry Loss Warranty (ILW), or binary, form and each can be assumed or ceded 
although not to the same degree. The Table below contains the details: 
 

 
 
 A $10 billion triggered ILW for Florida Wind could be written for a premium8 of 
17.5%. The example assumes that up to $25 million can be written, but if ceded, only $10 
million is available. Similarly the 2% premium will be received if $25 million of $20 
billion RUS is written, but only $10 million can be ceded. Note that there is a 10% 
transaction cost associated with either writing or ceding any deal selected. This can be 
viewed as combination of brokerage and/or bid-ask spread. 
 
The Risk Environment 
 
 The risk environment in which the optimization decision must be taken is 
captured in the graphic below: 
                                                 
8 To repeat footnote 6, the prices assumed herein are pre Katrina, as are the risk profiles. 

Maximum written Limits Maximum retrocession LimitsPrices for given Deal Opportunities Maximum written Limits Maximum retrocession LimitsPrices for given Deal Opportunities Maximum written Limits Maximum retrocession LimitsPrices for given Deal Opportunities



 
 The probability of events greater than $10 billion are respectively assumed to be 
7.9%, 3.3% and 3.7% depending on whether the event is in FLA, GEO or RUS. 
Remember the corresponding premiums, at least for FLA and GEO, are 17.5% and 4.5%. 
Scenarios can be generated at any point on any of the curves. And the Nation Wide Curve 
can be generated from the component curves. The probability of exceeding a $10 billion 
event nationwide is 14.04%. We are assuming that there is no correlation between events 
hitting FLA, GEO or RUS. This is not necessary to the analysis; it is simplifying.  
 For example, one could have a $40 billion event hitting RUS and $10 billion 
event hitting FLA. (Sound familiar? How about Katrina and Wilma in 2005?) That 
scenario could be labeled j. Then all the deals i would have a lossij = 0 or 1 depending on 
whether the particular strike level was above or below the RUS $40 billion or the $10 
billion FLA level. On the other hand the NWW covers would be triggered by the $10 
billion9 RUS level or by the $40 billion FLA loss, which ever came first, but it would be 
triggered in that scenario. In other words, while there is independence among our three 
principal zones, there is absolutely dependence in the NWW zones on the other three. 
 
 
Risk Preferences 
 
 The risk preference constraints used are as follows: 
 

1) Probability 30%, CVaR limit of 10% loss of risk capital 

                                                 
9 We are assuming that all the ILW deals in this example are “one shot” without possibility of reinstatement. 



2) Probability 20%, CVaR limit of 20% loss of risk capital 
3) Probability 0.1%, CVaR limit of 100% loss of risk capital 

 
The first of these might be articulated as “on the worst 30% of outcomes the 

expected net loss to capital should be no more than 10%”.  The second and third 
constraints are more stringent. The third says “even in those cases which will occur less 
than one in one thousand times (Probability <= 0.1%) the expected loss of capital is no 
more than 100%”.  This last put a constraint on losing all one’s capital. It does not mean 
it cannot happen, it simply says that should not happen more frequently than once in one 
thousand years. 

We talked extensively about CVaR in the previous paper so we will not repeat 
that, here. Suffice to say it is a tractable measure (i.e., it can be solved using linear 
programming) and it seems to capture the essence of most risk management’s expressions 
of downside concern. It also has the virtue of being consistent with the way rating 
agencies view reinsurers. 
 
 
The Solution 
 
 The model was run over 20,000 scenarios and the optimum (primal) solution is 
displayed in the table below and in the appended tables. The appended outputs 
correspond to many of the reports regularly generated from a ReAL solution. They were 
discussed in detail in the previous paper so will not be dwelt on here, but they can 
provide further explanation of the aspects of the solution to be discussed here. 

 
 
 The expected return on equity, before investment income, as shown in the 
appendix was 8.58%; initial capital being $100 million. The portfolio composition of the 



optimal solution is shown in the table above. Clearly, it is profitable to write a lot of FLA 
wind cover, in this case to a maximum exposure of $117.44 million. In particular the $10, 
$12.5, $15 and $50 billion trigger covers are written to their maximum. Fractions of what 
is possible are written in the $5 and $20 billion trigger covers, indicating that these make 
marginal contributions. About 30% of the exposure is written in GEO and a small amount 
is written in RUS. Noticeably a $10 NWW cover is ceded rather than assumed, which we 
return to examine momentarily.  

For now, observe the following about the solution. First, it is diversified by zone. 
Second, it is diversified by layer. Third, it exposes capital to a maximum of $165.74 of 
aggregate limit. Finally, it cedes as well assumes risk. None of these features were 
required of the solution in the model specification. There was no forcing of 
diversification, as is typical of a “pillar” approach is some simulation solutions. There 
was no forcing of a layering, it chose to do that. There was no leverage limit imposed on 
the solution. In the solution, the leverage (maximum exposure divided by available 
capital) was an outcome of the interplay between the opportunity set and the specified 
risk preferences. All these features are testament to a robust model that produces realistic 
solutions, rather than forced answers. 

This is particularly true for the ceding of risk. Prudent risk management in 
practice requires that underwriters be alive to the price of retrocessional opportunities as 
well as the price of risk to be assumed. Evidently, the internal logic of stochastic 
optimization has driven the model in this example to cede as well as assume risk. The 
total written premium for the optimum portfolio is $19 million. Of this the model has 
decided to spend $2.8 million on retro and buy protection for some aspects of its risk 
profile. The optimum solution purchases $10 million of the $5 billion NWW cover. Net 
written premium is therefore $16.2 million. After expensing transaction costs and 
expected losses, net of expected recoveries, the expected portfolio return is $8.58 million. 

Before exploring the rationale of the retrocessional decision it is worth spending 
one more moment on understanding how the NWW will work. Given the other aspects of 
the solution it should be clear that a, say, $6 billion event in FLA will cause a loss due to 
the written FLA $5 billion cover, of $19.14 million, but that this will be offset by a 
recovery from the $5 billion NWW ILW of $10 million. If, however, the $6 billion event 
occurs in GEO or RUS then the written portfolio incurs no loss, but there is a recovery 
from the $5 NWW ILW. This is recovery without loss. It would not be allowed in 
traditional retrocession, but can occur here because of the industry aspects of ILWs. 
Given the potential of recovery from all possible scenarios, the expected recoveries is 
$2.95 million.  

So, is the internal logic simply identifying an under-priced ILW where the 
premium is less than the expected recovery? It would seem so until transaction costs are 
taken into account. Remember these are set at 10% of premium, whether bought or sold. 
Therefore the cost of the cover is $2.8 million plus 10% for a total of $3.08 million. The 
model is actually entering into the purchase of a negative value transaction. It is spending 
$3.08 million to get an expected recovery of $2.95 million. In other words it expects to be 
out of pocket $0.13 million. And yet this is the optimal thing to do.  

In observing the reinsurance industry, capital market participants are often curious 
about why reinsurers spend money of retrocession. Renaissance Re, ACE and XL, for 
example, average nearly 20% of Gross Written Premium spent on retrocession. Why does 



it make sense to purchase that amount at a negative spread? Why not just stick with the 
Gross Written Premium and save that money? The answer to that question lies in stated 
risk preferences. If the underwriter is indifferent to the risk profile he assumes then 
retrocession may not make sense. Once it is admitted that the portfolio profile matters, 
retrocession can make sense, and allocations of costs and capital can also be done on a 
risk adjusted basis. 
 
Allocating the Retrocessional Cost on a conventional basis  
 
 The conventional method of allocating retrocession costs is to allocate by simple 
expected loss. We will refer to this as “a priori expected loss” since it uses the original 
scenario probabilities, unadjusted for risk preference. We assume that FLA GEO and 

RUS are divisions of the company. The retro cover inures to all of them, so who should 
pay what? The conventional approach is laid out in the table above. 

The premiums written in each zone are, respectively, $18.2 million, $0.78 million 
and $0.2 million in FLA GEO and RUS. After calculation of transaction costs and 
expected losses by zone the a priori profits by zone are, respectively, $8.14 million, $0.5 
million and $0.08 million. And of course as we have already identified there is an 
expected net cost of $0.13 million that is spent on retrocession and had to be divvied up 
to the three zones. 

One way to do that is by the zonal expected losses, in which case some 96% of 
costs would go to FLA, but that is far too crude. Instead, the expected recoveries can be 
calculated for each zone and they are listed in the allocation row as $1.31 million, $0.64 
million and $1.0 million for FLA, GEO and RUS respectively. Premium and transaction 
costs can now be allocated by those proportions viz $1.37 million, $0.66 million and 
$1.05 million. Expected profits for each of the zones is now determined; 96.3% 
(=$8.08/$8.58) of the profits emanate from FLA even though it assumes only 70% of the 
limit. 



Unfortunately, this allocation scheme takes no account of the risk preferences of 
the management. Instead it allocates as if management were indifferent to the various 
risky outcomes, even though the model has restricted the output to be consistent with 
management desires. 
 
Implied Probabilities 
 

 As we have demonstrated in our previous paper the dual outputs from our 
optimizing model can be used to calculate implied probabilities and these carry with them 
the essence, the DNA so to speak, of risk preferences. The graphic above illustrates the 
nature of implied probabilities. It displays the worst 1% of the 20,000 scenarios used in 
our optimizing model, i.e. 200 scenarios. 

In the a priori estimates of expected loss each scenario was given an equal 
probability of occurrence of 0.005% (=1/20,000). Implicit in the optimizing model is a 
vector of implied probabilities which accords different probabilities to each scenario, 
depending on its impact on risk preferences. In the graphic scenario 11,649 is given a 
probability of 0.18201, while scenario 19,684 is given a probability of 0.0071002. 
Evidently scenario 11,649 is one to avoid. The vector of implied probabilities is critical to 
explaining optimizing decisions within the model. It converts a priori analysis to risk 
adjusted analysis. 
 
 



Decomposing the retrocessional cost on a risk adjusted basis  
 
 We can now repeat our conventional analysis on a risk adjusted basis. Essentially, 
the expected value calculations of the previous table are repeated using implied 
probabilities rather than a priori probabilities. The first feature to note in the table is that 
the “risk adjusted expected losses” for each zone are different from the a priori expected 
losses. This is true even before allocation of any retrocessional cost. The risk adjusted 
expected losses are $15.43 million, $0.60 million and $0.18 million, respectively. This 

leaves risk adjusted expected profits of $0.78 million, $0.11 million and $0.00 million. 
This is a much less skewed sourcing of expected profits than in the a priori case where 
some 96.3% of profits came from FLA deals. Indeed the real surprise is perhaps that on a 
risk adjusted basis, the $5 billion NWW retrocessional cover is almost as valuable as the 
FLA covers. As before the cost of obtaining the retro is $3.08 million. The risk adjusted 
value of the recoveries gained from this cover is $3.74 million for expected profit of 
$0.64 million. In other words, on a risk adjusted basis, the retro is almost as valuable as 
the FLA writes. 
 We can now allocate the premium to the zones. Risk adjusted expected recoveries 
are, respectively, $2.14% million, $0.64 million and $0.95 million. The proportions are 
57% (=$2.14/$3.72), 17% and 25%. These fractions are used to allocate the premium 
plus the transaction costs. The result is zonal costs of $1.77 million, $0.53 million and 
$0.78 million. Profits by zone are $1.15 million, $0.22 million and $0.16 million. These 
amounts are proportionately very close to the proportion of the limits by zone. 
 



 How different is the allocation of the retro premium? That is captured in the 
preceding comparison table. When allocating on the basis of a priori expected recoveries, 
some 44% of the premium cost is allocated to the FLA division. However, on a risk 
adjusted basis that allocation should be more like 57% of the costs, with correspondingly 
less charged to the GEO and RUS divisions. 
 In dollar terms this may not seem like a big deal. The allocation of the retro 
should be $1.77 million vs. the $1.37 million conventionally allocated. It will still leave 
the expected profits from FLA dominating the profits from the portfolio as a whole. 
However, what is suggested here is that that may not be the best way to view the results. 
Instead it should be done on a risk adjusted basis.  
 
Viewing the Contributions from each Zone  
 
 Many sports teams are built around star players. They score the most points and 
consistently are rated as MVP and match winners. But for every star like Michael Jordan 
there are others who come with their own set of problems, both on and off the field. As 
team owners and management try to project wholesome images and pure competitive 
superiority, stars can undermine the image with their own unsavory antics, while still 
being their team’s highest point scorer. Team owners and managements have to decide 

how much bad star they are prepared to take, in order to retain the good star. That 
depends on their (or the league’s) preferences. 
 
 So it is with reinsurance and retrocession.  



 FLA clearly puts the premium dollars on the bottom line. However, it comes with 
risks of huge losses. It might appear that the FLA contributes 96% of the profits of the 
portfolio, but, given other preferences and objectives the risk adjusted contribution is 
closer to 75%. This is still huge, but it is a more nuanced view of the contribution. By the 
same token the contributions of GEO and RUS are elevated. A priori they look anemic. 
Risk adjusted, they clearly fulfill an important role.  
 We can also try to view the contributions graphically. The diagram above 
illustrates both the cumulative exceedence curve (blue line) and attempts to show the 
component losses by zone. Remember, the blue line is the net curve of the optimal 
portfolio. The contributions to loss are dominated by the shaded red areas where FLA 
contributes to loss. GEO and RUS also cause losses but the shadings for them are hardly 
visible. 
 The other feature of the graph that is instructive is the area of heavy red. This 
represents recoveries from NWW retro purchase. Notice that the retro recoveries make a 
contribution at nearly all loss level scenarios (and some profit scenarios). Red moves the 
blue line upwards and to the right. Retrocessional capital is valuable. As we will see it 
may be more valuable than real capital, simply because real capital may only relieve a 
single or a few binding risk capital constraints. To see this it is worth asking how the 
existing capital should be allocated to the zones. Like the retro allocation it will involve 
risk adjusted returns, but it will also require a more explicit calculation of the binding risk 
preference constraints. 
 
On Capital Allocation  
 
 We proceed with a series of observations. 
 Our first observation is, if we had to allocate capital based upon the worst 
possible scenario, we would do it on the basis of the total limits, i.e., $117.44 for FLA, 
$48.30 for GEO and $10 for RUS for a total of $165.74. (In the tables below I have 
allocated the purchase of NWW on a risk adjusted basis as described earlier. We get the 
same allocation either before or after its allocation.) We don’t have $165.74 of capital, 
only $100. That is what we are allocating. And so we could just scale the proportions, but 
that is not correct. Our risk preference constraints speak to probable events, and we know 
from the solution that two are binding – 20% and 0.1%. (See the risk report in the 
numerical appendix.) We also know the relative dual values of each of them 0.67 and 
41.09.  
 
 Second observation, we can calculate the risk adjusted expected loss (i.e. using 
implied probabilities) at each of the binding CVaR constraints – see the table below. 
 
 



 In the table, for example, at the 20% constraint, 96.3% of the total risk adjusted 
expected losses emanate from FLA. At the 0.1% scenario, of the risk adjusted expected 
losses, 77.9% of total risk adjusted expected losses emanate from FLA. And of course, in 
the worst case 66.8% come from FLA. Since we are not concerned with the absolute 
worst case, the actual capital allocation should be a linear combination of the two binding 
constraints. (I have ignored the 30% constraint because it is not binding.) 
 Third observation, the linear combination should be relative to the duals. They 
express the “bindingness” of the constraints (if that’s a word). So the next two tables 
show the affect of that. 
 

 The correct way to weight the relative allocations is now clear. In percentage 
terms the correct FLA allocation is (1.6%) of 96.3% plus (98.4%) of 77.9% = 79.5%. The 



same reasoning gives 20.9% to GEO and 1.3% to RUS. In many ways this is a 
satisfactory solution because it acknowledges that the least profitable zone (RUS) still 
requires capital. Many capital allocation schemes often attribute zero capital to a unit that 
produces zero risk adjusted marginal return while still being part of the solution. 
 
Conclusion and empirics 
 
 This paper has tried to show how the internal workings of an optimization 
approach to underwriting portfolio selection can be used to gain insight into the workings 
of allocation processes. Optimal allocations, whether of retro cost or existing capital, 
improperly viewed can lead to suboptimal decision making. The proper allocations rest 
heavily on implied probabilities and dual values. Together these convey the juxtaposition 
of risk preference and opportunity. We have focused on one way of expressing preference 
(CVaR) but we believe the results carry through equally well for VaR or any other 
expressions of preference, such as quadratic, etc. (although the algebra might quite 
problematic).   
 Simply put, it seems safe to say that it is impossible to answer questions about 
allocation without knowing what risk preferences are. 
 This raises the question of why such little emphasis is put on gleaning the risk 
preferences of existing reinsurance companies. It is, to be sure, a difficult exercise but 
worthwhile it would seem. 

 In an attempt to glean insight into reinsurer’s preferences consider the graphic 
above. It displays the performance of six public reinsurers over the last ten years. The 

Figure 6Figure 6



results are ordered in such a way (from best to worst) to emulate the exceedence curves 
we displayed for the three-zone example. To us it suggests that these reinsurers have both 
different performance and different appetites for risk. In future papers we will explore 
these empirical differences as well as lay out more detail on capital allocation formulas. 
 Demonstrating the virtues of marginal analysis from optimization techniques, we 
believe can reveal other properties of optimal decision making beyond those discussed in 
our first two papers. It can lead to powerful insights and to the furtherance of good 
practice. Also it can lead to powerful avenues for further inquiry into actual practice. That 
however is for a third paper and is not discussed here. 
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   NUMERICAL APPENDIX 
 
 

The following Pages contain full details of the numerical example 
Optimum Portfolio Return Profile and Portfolio Detail. 
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MATHEMATICAL APPENDIX:  Algebra of Allocations 
 

 
In this appendix we develop the algebra for allocations for recoveries and for capital 
allocation under some simplifying assumptions.  We do this using the dual equations of 
our model. 
 
1. The Dual Problem 
 
We write the dual relations based on the model.  The model equations are replicated in 
the following and each dual variable is identified with its associated constraint.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) [ ]

( )
0

    0, 1 , , ,        1        
, , ,

     

0 (1 )(1 ) (1 )(1 )  0             Dual:  

1 1 0
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i i k i i

i I
j j i i

j j j j
j J

i i
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∑
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The dual objective is: 
 

(1) 
0

, ,

min
, , , ,     (1 )  
, , ,

                                             

i i i k k k i
k K i I

k k i j j k i

j j
j J j J

u u ul ug ucap c cvar capital ucvar rate capital u
ucvar uz ubd ubr uzl

tm capital ucap ubd ubr

∈ ∈

∈ ∈

− × × + ×

+ × × + +

∑ ∑

∑ ∑

 

 
 
Corresponding to the 0funds variable, we have: 
 

(2) 00 (1 ) i
i I

u rate u
∈

= − + ∑  

 
Corresponding to the 1ifunds variables, we have: 
 

(3) ,i i k i
k K

u uzρ
∈

= −∑  

 
Corresponding to the jdeal variables, we have: 
 

(4) ,00 (1 )(1 )  i jj i j
i

p trs bda u loss ul ubd= − − − − +∑  

 
Corresponding to the jretro variables, we have: 
 

(5) ,00 (1 )(1 )  i jj i j
i

p trs bda u loss ug ucap ubr= + + − + +∑  

 
Corresponding to the ilosses  and igains  variables, we have: 
 

(6) 
0
0

i i

i i

u ul
u ug

= +
= − +

 

 
Corresponding to the kα variables, we have: 
 

(7) ,0 (1 )k i k
i I

uz c ucvar
∈

= − + −∑  
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Corresponding to the ,k iz variables, we have: 
 
(8) ,0 k i i kuz ucvarρ≤ − +  
 
 
We have the following constraints on the dual variables: 
 

(9) 
,

0

j

k i

k

uone
ucap
uz

ucvar

≤  

with all the others being unbounded. 
 
Lastly, we have the primal/dual equality at the optimum: 
 
 

(10) 
 1 (1 )  

                                             

i i k k k i
i I k K i I

j j
j J j J

funds c cvar capital ucvar rate capital u

tm capital ucap ubd ubr

ρ
∈ ∈ ∈

∈ ∈

= − × × + ×

+ × × + +

∑ ∑ ∑

∑ ∑
 

 
We omit writing down the complementarity conditions. 
 
 
2. Implied Probabilities and Pricing 
 
If we rewrite equation (2), we get: 
 

(11) 0

(1 ) i
i I

u u
rate ∈

=
+ ∑  

 
Now, let: 
 

(12) 
0

(1 )i i
i

i
i I

u rate uu
uu

∈

+
= =

∑
%  

 
As these sum to one, we will call them “implied probabilities” for the scenarios. 
 
As we will see, these implied probabilities have a similar interpretation and use as in the 
Arrow-Debreu “risk-neutral probabilities” or “risk-adjusted probabilities” and are used to 
compute “state-price deflators” using rate as the riskless rate.  The iu% define the relative 
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price of a “state” and identify those states that are most important in terms of impacting 
risk capital. 
 
The losses, ,i jloss , for scenario i and deal j are the unit losses.  The net return per unit of 
written premium of the deal then is (1 ) ip trs loss− −  for scenario i where we drop the 
index j.   
For written premium, the expected return per unit of premium is then 

( )(1 ) (1 )i ii i
i I i I

price trs loss price trs lossρ ρ
∈ ∈

− − = − −∑ ∑ .   

 
Now, let us compute the expected return on writing the deal in terms of the risk neutral 
probabilities.  In the remainder, let us assume for simplicity that 0rate = .  Therefore, the 
risk adjusted expected return on the deal with our implied probabilities is: 
 

(13) 

( ) ( )

( )

0

0
0

0 0
0

0

1(1 ) (1 )

from (12)

1 (1 )

from (11)
1 (1 ) (1 )

from (4) and (6)

i ii i
i I i I

i i
i I

price trs loss u price trs loss u
u

price trs u loss u
u

price trs u ubd price trs u
u

ubd
u

∈ ∈

∈

− − = − −

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

= − + − −

=

∑ ∑

∑

%

 

 
This then gives us the following fundamental equation for all pricing issues. 
 

(14) 
0

(1 ) i i
i I

ubdprice trs loss u
u∈

− − =∑ %  

 
 
The equations for computing threshold prices derived from these are given in our 
previous paper and are not repeated here. 
 
3. The marginal return to risk capital 
 
Now we will review the main pricing equation in some more detail. 
We have for any price j: 
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(15) ( ),

0

(1 ) j
i j ij

i I

ubd
price trs loss u

u∈

− − =∑ %  

 
where 0u  is the “marginal return per dollar of non-risk capital”.  In our example 

0 1.1747u = . 
 
Now let: 
 
(16) ,, (1 ) i ji j jpl price trs loss= − −  
 
 
 
and define jR as: 

(17) ,j i j i
i I

R pl u
∈

= ∑ %  

and we have that jR  is called the risk-adjusted expected profit for deal j. 
 
 
And so: 
 

(18) 
0

j
j

ubd
R

u
=  

 
 
Let us discuss what equation (18) means.  First, 0u  is the marginal return on a unit of 
non-risk capital.  This is capital “inserted” into the equation (9) (primal model) on the 
right-hand side; or equivalently at the beginning of the year as it changes the value of the 
variable 0funds .  It is more valuable than risk capital because it can be used in any state 
constraint and the constraint on risk capital may call for a percentage of risk capital (for 
example for a 50% loss of capital) so, in essence, risk capital may be diluted.  If the only 
risk constraint we had in the model was one at 100% of capital, as we will see later, the 
variable 0u  will equate to the marginal return on capital. 
 
Then jubd  is the marginal return on deal j and this marginal return is essentially counted 
at the end of the year.  Therefore the left-hand side can be considered the total risk-
adjusted expected profit and it is equal to the total discounted marginal return on the deal.  
Later we will see another interpretation of this. 
 
From equation (3) we see that we can also consider the ,k iuz as probabilities.  For 
simplicity of exposition we will assume that 1k = .  Using the same idea as above, we 
will define the following: 
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(19) 

,

      with      

j i j i
i

i
i

i
i

Q pl uz

uzuz
uz

=

=

∑

∑

 

 
and we will call jQ the “risk adjusted expected losses impacting risk capital” . 
From (3) we see that  
 

(20) 0 1i i i
i i i

uz u uρ= − = −∑ ∑ ∑  

 
and so we can also write (19) as: 
 

(21) 
,

,
0 1

i j i
i

j i j i
i

pl uz
Q pl uz

u
= =

−

∑
∑  

 
 
The iuz have interesting properties.  They are probabilities in that they sum to one.  They 
are the duals to the equations by scenario that impact the CVaR constraint to capital.  
They are zero for those scenarios that do not impact the capital constraint.  If 0jQ = , 
then increases in the deal j will not have any impact on the risk capital.  If 0jQ < , then 
increases in the deal j will require increases to risk capital and if 0jQ > , then changes in 
the deal j will allow decreases to be made in the amount of risk capital required, 
everything else remaining the same.  We will investigate jQ more. 
 
We observe the variable 0u   assuming that 0rate = . 
 

(22) 

( )

0

,

                           by (11)

1               by (3)

1 1     by (7)

i
i

k i
i k

k k
k

u u

uz

c ucvar

=

= +

= + −

∑

∑∑

∑

 

 
 
Now, consider the right-hand side of the k risk constraint and call it kb . 
Then: 
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(23) (1 )k k kb c cvar capital= − ×  
 
And assuming sufficient differentiability (or uniqueness of the dual solution), we have: 
 

(24) 
(1 )

k

k k

k k k
k

f f b
bcapital capital

ucvar c cvar

∂ ∂ ∂
=
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= −

∑

∑
 

 

with 1i i
i I

f fundsρ
∈

= ∑ or the objective function of net return. 

 
Now suppose we have only one k and that 1kcvar = , which means 100% loss of capital.  
Then we can substitute (22) into (24) and we have that: 
 

(25) 0 1 fu
capital
∂

= +
∂

 

 
This states that, in the case specified with one k, that 0u  is equal to the marginal return on 
capital. 
 
Now if we have proper differentiability at the optimal solution, then we can write: 
 
 

(26) j

j

f
dealcapital

fdeal
capital

∂
∂∂

=
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∂

 

 

In order to compute 
j

f
deal
∂

∂
 in terms of its impact on the risk capital, we see how it 

behaves through the constraint associated with the iuz dual variables.  When considering 

j

f
deal
∂

∂
 in this regard, we neglect the contribution from the bounds on the deals but we 

will return to this later.  Thus we obtain the following: 
 

(27) ( ), 0 1i j i j
ij

f pl uz u Q
deal
∂

= − = − −
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And then we get: 
 
 

(28) 
( )0

0

1
1

j j
j

j

f
deal u Qcapital Qfdeal u

capital

∂
∂ − −∂

= = = −
∂∂ −

∂

 

 
 
Therefore we can consider the contribution to risk capital, or RC,  for a set of j deals as: 
 

(29) ( ) j j j
j J j Jj

capitalRC J deal deal Q
deal∈ ∈

∂
= = −

∂∑ ∑  

 
 
That is, jQ− is the marginal change in capital per unit of deal j, or the marginal risk 
imposed by deal j.  In using equation (29), we assume that the optimal solution behaves 
linearly around the optimal point.  We can interpret j jdeal Q−  as the contribution to the 
risk capital for deal j.   
 
 
 
We can write the expected return in the following way with the simplifying assumptions 
mentioned before and omitting retrocessions. 
 

(30) 

( )

( )( )

,

,

, ,

,

0 0

1

                            by (3)

                   by (4)

1

i i i i j j
i I i I j
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i I j

i i j j i i j j
i I j i I j

j i i j j
j i I j

j j
j
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u uz pl deal

u pl deal uz pl deal

ubd uz pl deal

u R u Q

ρ ρ
∈ ∈

∈

∈ ∈

∈

=

= −

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= − −

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑                          by (18) and (21)jdeal

 

 
If we interpret the risk adjusted expected profit for deal j as 0 ju R  and the risk adjusted 

expected losses as ( )0 1 ju Q− , then we could say: expected profit equals risk adjusted 
expected profit less risk adjusted expected losses at the margin.  We explore this more in 
a subsequent paper. 
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Equation (30) shows that the expected profit is made up of two parts; 0 ju R  and 

( )0 1 ju Q− .  Suppose the first is non-zero and the latter is zero.  This means that the deal 
is limited by an upper bound and that marginal increases in the deal will have no impact 
on the risk capital.  This can happen because its losses all occur in scenarios where the 
corresponding 0iuz = , or in scenarios that are not binding on the risk capital. 
 
Suppose on the other hand that ( )0 1 0ju Q− < , then because of (28) and since 0 1u > , this 
means that increases in the deal will require increases in the capital given everything else 
equal.  This means there are losses in those scenarios where 0iuz > .  The opposite occurs 
when ( )0 1 0ju Q− > .  Although this case is possible, the model would otherwise increase 
the deal as it wouldn’t affect the risk capital and therefore it must be bounded above by a 
limit and so the term 0 ju R must be positive. 
 
4. Decomposing retrocessional cost 
 
Given this interpretation, it makes sense to allocate proportional to the contribution to 
risk or risk capital any returns due to retrocessional cover . 
 
Consider the risk adjusted gains from a retrocessional cover.  The contribution to risk 
capital from these gains should be applied against the marginal contribution to risk  from 
the other covers. 
 

retroQ is the risk adjusted expected loss for the retro.  Since we assume the sign is positive, 
the term amounts to contributions to risk capital, or how much additional risk capital is 
obtained.  We naturally assume 0retroQ > and therefore ask how should the retro be 
apportioned to each deal.  As we saw above, this means that the capital can be reduced.  
The natural answer is: 
 

(31) { }proportional amount to j j
j

l l
l

Q deal
deal

Q deal
=

∑
 

 
This measure gives full contribution to a recovery for a scenario that is more important or 
has a higher relative value for iuz and these are the constraints that most affect the risk 
capital.  The gains are apportioned with respect to those units where the corresponding 
scenario has an impact (see body of paper).  Then the retrocessional costs (premiums) are 
allocated by the same proportions. 
 
5. Capital allocation 
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Suppose we wanted to allocate capital.  Following on from the previous section, one way 
to allocate capital is to do it so that the marginal contribution to return per unit of capital 
is the same for all units.  We have a function for the contribution to risk capital summed 
over all deals given by (29).   
 
Now suppose we have k sets 1 2, , , kD D DK that represent a partition of the j deals; each 
one representing a separate unit.  Let 1 2, , , kcap cap capK  represent an allocation of capital, 

capital , into the k units so that 
1

k

l
l

cap capital
=

=∑ .  We want to pick the allocation so that 

the total marginal contribution to risk capital per unit of capital is the same for all units.  
 
Therefore the allocation coefficient, lalloc  for unit l is: 

(32) 

1

( )

( )

l

j j
j Dl

l k

m j j
m j

deal Q
RC Dalloc capital capital
RC D deal Q

∈

=

= =
∑

∑ ∑
 

 
Then the total marginal contribution for all deals in a unit per unit of capital or: 
 

(33) l

j j
j D

l

deal Q

alloc
∈

−∑
 

is the same for all units and is equal to: 
 

(34) 
j j

j

deal Q

capital

−∑
 

which is itself the total marginal contribution of risk capital per unit of capital. 
 
The contribution to risk capital can be used to compute the return on risk adjusted capital, 
RORAC, as in Theiler et. al. (2002) as: 
 

(35) 
( )( )0 0 1j j j

j

j j
j

u R u Q deal
RORAC

deal Q

− −
=

−

∑

∑
 

 
 
This is a simplified explanation.  In a subsequent paper we will discuss non-unique 
solutions and what to do about them and zero marginal returns, reintroduce the risk free 
rate, discuss multiple risk constraints, and discuss how this applies to the Euler capital 
allocation principle. 
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