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Abstract 

We propose a dynamic Rational Expectations (RE) bubble model of prices with the intention to 
exploit it for and evaluate it on optimal investment strategies.  Our bubble model is defined as a 
geometric random walk combined with separate crash (and rally) discrete jump distributions 
associated with positive (and negative) bubbles.  We assume that crashes tend to efficiently bring 
back excess bubble prices close to a “normal” or fundamental value (“efficient crashes”). Then, the 
RE condition implies that the excess risk premium of the risky asset exposed to crashes is an 
increasing function of the amplitude of the expected crash, which itself grows with the bubble 
mispricing: hence, the larger the bubble price, the larger its subsequent growth rate. This positive 
feedback of price on return is the archetype of super-exponential price dynamics, which has been 
previously proposed as a general definition of bubbles. Our bubble model also allows for a 
sequence of small jumps or long-term corrections.  We use the RE condition to estimate the real-
time crash probability dynamically through an accelerating probability function depending on the 
increasing expected return. The facts that our jump process is related to the price process thought 
the normal price and the probability distribution can change over time make it different from 
existing bubble models.  After showing how to estimate the model parameters, we examine the 
optimal investment problem in the context of the bubble model by obtaining an analytic expression 
for maximizing the expected log of wealth (Kelly criterion) for the risky asset and a risk-free asset. 
We also obtain a closed-form approximation for the optimal investment.  We demonstrate, on seven 
historical crashes, the promising outperformance of the method compared to a 60/40 portfolio, the 
classic Kelly allocation, and the risky asset, and how it mitigates jumps, both positive and negative.   
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1 Introduction 

The last financial crisis revealed serious flaws in economic modelling and in the use of mathematical and 

engineering models in finance, in particular with respect to the occurrence of bubbles, crashes and crises. 

The present article contributes to enriching the understanding of financial markets by proposing a simple 

bubble and crash model, which can be calibrated and made operational in portfolio investments. The model 

stresses the importance of positive feedbacks, the tendency for financial markets to self-correct only at long 

time scales (years to decades) while exhibiting significant departure from “normality” at short times (day, 

months and even years).   

In academia, discussion on financial bubbles often start with a reference to the Efficient Market Hypothesis 

(EMH), which in essence states that prices of financial assets properly reflect underlying economic 

fundamentals. Financial bubbles and the crashes that frequently follow them are arguably the most vivid 

challenge to the EMH. Here, we define a bubble as a period of unsustainable growth when the price of an 

asset increases ever more quickly in a way not justified by fundamental valuation. A strand of literature has 

thus developed to detect deviations from the elusive fundamental value, with an extensive econometric 

literature on the identification of bubbles, see e.g. (Homm and Breitung, 2012; Phillips et al., 2015; Vogel 

and Werner, 2015). Another branch of the literature has been concerned with the possible generating 

mechanisms, in particular addressing the paradoxes posed by the apparent arbitrage opportunities provided 

by persistent overpricing during bubble regimes, see e.g. the reviews (Kaizoji and Sornette, 2010; 

Brunnermeier and Oehmke, 2013; Xiong, 2013). The present article focuses on the second part concerned 

with the development of a suitable theoretical framework to model financial bubbles, which can be 

exploited to develop crash- and rally-aware optimal portfolios. 

The present article elaborates on a number of works developed by our group, which start with an analysis 

of the price behavior in times of a possible bubble. As in Evans’ model, one assumes that there is the 

possibility of a crash in a bubbly market. The assumption that the bubble is a rational expectation bubble 

gives a relationship between the price process and a possible crash. Some of the main concepts that are 

needed to understand the behavior of financial markets are social imitation, herding, self-organized 

cooperativity and positive feedbacks, which leads to super-exponential, unsustainable growth of the price 

process (Johansen et al., 1999; 2000; Sornette, 2003; 2014; Johansen and Sornette, 2010; Jiang et al., 2010; 

Sornette and Cauwels, 2015]. We note that super exponential growth during a bubble has been confirmed 

in a model-independent analysis of real stock market data (Leiss et al., 2015) as well as in price formation 

experiments (Hüsler et al., 2013). 

 



Super-Ex RE Bubble Models                                                                                                              Page 3 of 58 

 
With this background, our bubble model has the following important properties: 

1. It is a Rational Expectations model. 

2. Prices temporarily deviate from a fundamental value or “normal price” process. 

3. It is mildly explosive when the crash/rally probabilities are taken as average. 

4. It can become super-exponential, following a path that would end with finite time singularities 

when probabilities are computed dynamically in a positive or negative bubble. The presence of 

crashes prevents actually reaching the finite-time singularities. 

5. It never stops even on negative bubbles. 

6. The price stochastically oscillates around a normal price until it randomly begins to grow or decline 

and then accelerate to a bubble (positive or negative). 

 

It also has the following secondary properties: 

1. The price growth converges in the limit to that of the normal price process. 

2. As a consequence of the crashes and rallies together with the transient super-exponential phases, 

the price oscillates between positive and negative bubbles. 

3. There is no upper or lower bound on the log of the price. 

4. It combines a geometric random walk with a discrete Poisson distributions of crashes/rallies. 

5. The crash/rally distribution sizes allow for over- and under-shooting the normal price. 

6. Prices never become infinite as the crash probability becomes one before that happens.  

7. It shows how bubbles can be spontaneously initiated and terminated. 

8. It can be tested empirically by implementing an optimal investment method, which demonstrates a 

superior bubble mitigation performance. 

9. It is arbitrage free. 

 

In this model, a bubble begins because a random fluctuation has a large enough deviation from a normal 

price to throw it into bubble state whereby it may continue to accelerate because, in the presence of positive 

feedback, it takes larger correcting random fluctuations to bring the price sufficiently back down. This is 

conceptually similar to the mechanism put forward by Harras and Sornette (2011) in which bubbles 

originate from a random lucky streak of positive news that, due to a feedback mechanism of these news on 

the agents' strategies, develop into a transient collective herding regime. The bubble continues until it 
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probabilistically bursts, moving back toward the normal price level according to a distribution of crash 

sizes. 

Our bubble model suggests that investment in the bubble is rational given the expectation that players can 

sell off at a higher price in the future before the bubble bursts.  Yet, some players may get out as the 

probability increases beyond their risk threshold resulting in a plateau of prices before bursting.  The 

phenomena of acceleration and plateau are those that we capture in our bubble model. 

Our paper is organized as follows.  We begin with section 2 by defining the rational expectations model 

with efficient crashes. Section 3 shows how to calculate parameters of the model, particularly jumps and 

the separation of the geometric random walk from jumps and the jump probability.  Section 4 presents the 

calculation of the asset allocation of the optimal investment problem based on Kelly’s criterion or maximum 

expected log of wealth assuming average jumps and jump probability. Section 5 extends the bubble model 

to when the crash probability is determined dynamically through the rational expectations condition on real 

data.  This generates a super-exponential bubble model with underlying finite time singularities (which 

however are never attained due to the agency of crashes and rallies).  We show how to estimate the 

probability of a crash/rally.  Section 6 gives seven examples on real financial time series that exhibited 

bubbles and crashes. We show how our bubble model coupled with its specific Kelly portfolio allocation 

allows us to mitigate the crashes and provides superior performance.  Lastly, Section 7 concludes and 

discuss further work. 

 

2 Rational Expectation bubble model with “efficient crashes” 

2.1 Preliminary considerations and conditions 

This paper is concerned with a price process 0tp  and an associated bubble process tB  that satisfies 

three conditions: 
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Condition 1:  Rational Expectations.  We say a price process 0tp  satisfies the rational expectations 

condition if  
1ln   t

D
t

p
E r t

p


  
      

 .  We call Dr the discount rate3.   We assume it is constant, but this 

will be relaxed later. 

Condition 2:  Efficient Crashes.  We say that a price process 0tp  with 0 1p   (for simplicity) satisfies 

the efficient crash condition if it has a bubble process 0tB   and if there exists a “normal price” process 

 0 expt NN p r t such that t t tp N B  with  1
lim ln 0tt

E B
t

   .   

Condition 3:  Investment/Economic Rationalization.  The investment problem is concerned with 

obtaining an optimal asset allocation.  The economic problem or financial economics problem is concerned 

with models of the market, explaining how bubbles grow and collapse, and the impact of bubbles on asset 

prices.  This condition allows us to apply processes satisfying Conditions 1 and 2 to both problems.  When 

we assume that the rates Dr  and Nr  vary over time, we call them ,D tr  and ,N tr .  They can be random but 

must satisfy the condition that  ,D tE r    and  ,N tE r   .  

 

The process tN   is equivalent to the “normal price” process of Merton (1971).  These conditions imply that 

 1
lim ln t N Dt

E p r r
t

    or that the average return on the price converges to Nr  .   The pair  ,t tN B  

need not be unique.  tB  may consist of crashes, rallies, jumps, or slow corrections back to the normal price.  

By construction, the efficient crashes condition relates the crash amplitude  ln ln t
t

t

p
B

N

 
  

 
 to the 

mispricing difference between the bubble price and the normal price.   

The efficient crash condition does not imply that a crash moves the price exactly back to the normal price 

but rather that in general the price will converge toward the normal price and oscillate about it via the 

cumulative actions of the crashes in the presence of the burgeoning bubble process. 

                                                           
3 This is not to be confused with the interest rate charged to commercial banks by the Federal Reserve, although it 
could refer to that. 



Super-Ex RE Bubble Models                                                                                                              Page 6 of 58 

 
 

Proposition 1.  If a price process 0tp  satisfies the rational expectations condition and the efficient crash 

condition, then the bubble process tB  fluctuates about the normal price N, never terminates, does not need 

to correct exactly back to N, is finite, and accelerates in proportion to the distance from the normal price 

tN . 

Proof: 

We have 1 1ln lnt t
N

t t

p B
r

p B
    

    
   

  and since the price process satisfies the rational expectation 

condition, 
1ln t

D N
t

B
E r r

B


  
   

  
.  By definition 1 1

1

ln ln lnt t t

t t t

B p p

B N N
 



     
      

     
 .  In other words, the 

bubble process accelerates, whether a positive or a negative bubble, proportional to the asset mispricing.  

And it crashes back towards or eventually corrects to the normal price.   

QED. 

The study of bubbles (rational expectations or not) has tended to focus on two aspects; the investment 

problem and the financial economic implications, see Davis and Lleo (2013a). We combine both aspects in 

our bubble model.  It is in the context of evaluating our bubble model performance in optimal investment 

in mitigating crashes and taking advantage of rallies and explaining how bubbles begin and end. 

Bubble models have classically considered prices and dividends. Then a bubble is defined as when an 

asset’s price exceeds the discounted value of future expected cash flows, which can be prices plus dividends.   

However, in our bubble model, we assume total returns and similarly in historical price time series.  In our 

bubble model, when the average normal price rate converges to the discount rate, our current price is always 

the discounted value of the expected future price and the average expected return on the bubble component 

converges to zero.  Therefore, we do not have the usual difficulties in rational expectations bubble models 

requiring the bubble component being exactly equal to the asset’s required rate of return or issues in an 

upper bound on the price.  See for example, Scherbina, 2013.   
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Usually a price process with a bubble is written t t tp N B    as the sum of a fundamental and a bubble 

component.  If the fundamental price process  0 expt NN p r t  has t tB N   with ln 1 t

t

B

N

 
  

 
, 

then it satisfies the efficient crash condition if  
1

lim ln 1 0t

t
t

B
E

t N

  
   

  
 . 

In the bubble model of Blanchard and Watson (1982), when the fundamental value is added to the bubble 

component, the bubble component must also change at the discount rate.  However, if the asset is 

redeemable at a finite time in the future, the future bubble component must be zero.  This together with the 

condition that negative bubbles cannot exist make it impossible to satisfy our Condition 2.  It also means 

that, when we apply our bubble model to bonds for example, we are applying it to a total return index for 

bonds, which may have an infinite life. 

The paper most related to ours is (Yan, Woodward, and Sornette, 2010), which studied how to infer the 

fundamental value and crash nonlinearity from bubble calibration.  In that paper, they posed a bubble model 

in the form of an efficient crash model where the bubble component takes the form  t t

t

p N

p






  .  Here 

we use a similar expression  ln t

t

p

N


 
  

 
 for the crash amplitude when it occurs at time t.  

2.2 Model definition 

We define the following set of variables: 

t  = discrete time interval , 1t t  . 

tp  = price of the risky asset at time t. 

tr  = expected return of the risky asset on t when there is no crash or rally. 

   = standard deviation on t of the geometric random walk price process. 

t   = sample from a standard normal distribution at time t. 

Dr   = discount rate of the asset price on t . 

Nr   = growth rate of the “normal price” on t .   

fr   = risk-free rate on t .   

0p   = starting price of the risky asset. 

 0 expt NN p r t  : this defines the normal price process. 
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t   = probability that there is a correction (crash or rally) at time t. 

 ,i      = the size of the ith corrective jump relative to the distance to the normal price. 

We refer to it as the “crash factor”. 

i   = probability that, when there is a correction, it is of size i .  

1

n

i i
i

K 


  = expected corrective crash size relative to the distance to the normal price or 

expected crash factor.  

t
t

t

N
q

p
  is the relative (negative) mispricing of the risky asset. 

 
 
 
We introduce the simple stochastic price process with a discrete Poisson process. 
 

 

 

1 0exp    with    0

   and

                               with probability 1    with  0 1 

 ln              with probability     1,2,...,            

                    

t t t t

t t t

i t D t it

p p a p

r

q r i na



 
 

   

  

 

 

 
1 1

0

       ,  1,2,...,

   with

             and   =1    0 1 and   

         exp      

  

i i i

n n
t

t i i i i
i it

t N

i n

N
q K

p

N p r t

  

   
 




       

   



 

  (1) 

The crash factors are assumed independent and constant over time and distributed according to the 

probability distribution  Pr[crash amplitude ]  1,2,...,i i i n      . Thus, conditional on no crash 

happening, which holds at each time step with probability 1  , the price p
t follows a geometric random 

walk with mean return tr on t  and volatility  .   We assume that is constant, although it is not a 

necessary condition.  At each time step, there is a probability   for a crash/rally to happen with an 
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amplitude that is proportional to the bubble size, or amplitude defined as  ln ln t
t

t

N
q

p

 
  

 
 where 

 0 expt NN p r t  and rN  is defined as the long-term average return4.   

For simplicity of exposition, we will often use a single crash factor, K , and crash probability  . 

In the simplest incarnation of the model, the rates Dr  and Nr  are constant.  When we apply our model to 

real data, we will want to assume that they vary over time and then characterize them as ,D tr  and ,N tr . In 

this case, we will assume that both Nr  and Dr  vary with time and that Nr varies slowly while Dr varies 

more rapidly over time.  We may also consider Dr as varying about Nr . When they vary over time, we will 

want  , ,
1

1
lim 0.

t

N Dt
r r

t  



    

A positive i with a 1tq   means the risky asset is in a positive bubble with a potential correction relative 

to tN  of size i .  A negative i with 𝑞௧ > 1 means that the risky asset is in a regime of transient under-

valuation, where the price progressively accelerates downward and will eventually rebound in a rally jump 

of positive size i times the mispricing amplitude to get closer to the normal price process. The price 

process model defined by (1) holds for positive (  ln 0tq  ) and negative (  ln 0tq  ) bubbles.  We allow 

i  to have any real value so that we could replace the discrete jump distribution by a continuous one.   In 

general, and in applications to actual price processes, we will assume that there is a separate distribution 

  for positive and  for negative bubbles, consistent with empirical observations. 

To see clearly what  lnt i t Da q r   means, suppose  i
1. Our price process is such that the crash or 

recovery is instantaneous and occurs at the beginning of the discrete time interval t  .Then the occurrence 

of the crash at time t   leads to the price going from tp  to the exact value of the normal price  

 0 expt NN p r t  and continuing on the interval t  to 1tp   at the rate Dr .  The price thus changes 

                                                           
4 We call it the “normal price return”.  Some may interpret this as a fundamental price return but that is not the 
specific intention here. 



Super-Ex RE Bubble Models                                                                                                              Page 10 of 58 

 

instantaneously with magnitude   exp lni tq  at time t  and continues changing by  exp Dr  over the 

interval.  In other words,   1 expt t Dp N r  .  The price tN  thus acts as a reference price to which the price 

p
t  tends to revert intermittently via the crash occurrences.  

We assume that the crash probability is independent and constant over time:    1t t tE E     : We 

will relax this assumption later and make it dynamic. 

 

We refer to this specification as corresponding to “efficient crashes”, in the sense that their amplitudes are 

proportional to the bubble size  ln tq , as opposed to being independent of the mispricing.  Thus, the more 

the bubble booms above or below the average fundamental process, the larger the next crash or rally, which 

will thus tend to bring back the price p
t towards tN , as argued by Fama (1988) in his analysis of the Oct. 

1987 crash.  As we will show, this also ensures that, notwithstanding the presence of large bubbles, the 

price process remains co-integrated with the normal price process on the long term.   

Our bubble model does not require one large jump to correct to the normal price.  Because of the distribution 

 , it can be a sequence of small jumps.  It can also be a slower long-term correction depending on the 

evaluation of Dr  after a correction commences.   

2.3 Rational Expectation (RE) condition and determination of tr   

We assume now that the expected return tr is determined in accordance with the Rational Expectation 

condition 
1ln   t

t D
t

p
E r t

p


  
      

, which reads 

 

   

 

1

1

ln 1 ln

1 ln

n
t

t t i i t D
it

t
t D

t

D

p
E r q r

p

N
r K r

p

r

    

  





    
       

   
 

    
 





  (2)  
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where 𝐾ഥ is the expected crash factor. With the RE equation, the value tr  of the expected return of the 

risk asset is: 

 
 ln

1
t

t D

K q
r r




 


  (3) 

If there is never a crash ( 0  ), then the expected return of the risk asset is always Dr  . 

Equation (3) expresses a positive feedback of the price tp on the return tr that drives the price process 

before the crash occurs: the larger the price tp  above the fundamental or normal price tN , the larger the 

expected return.  As seen from equation (3), this positive feedback results from the assumption that the 

amplitude of the crash, when it will occur in the future, is proportional to the mispricing  ln ln t
t

t

N
q

p

 
  

 

.  Equation (3) not only relates positively the instantaneous tr  to the average crash probability   and to 

the average crash factor K , but also to the log-price,  ln tp , in excess to the logarithm of the normal 

price.  Thus, the “efficient crash” condition means that the crash sizes are approximately proportional to 

the amplitude of the bubble so that the price recovers a value close to the normal price after a crash.  The 

crash is an efficient correction to mispricing in that the price will oscillate about the normal price converging 

in the limit. Note however that, notwithstanding Condition 2, an efficient crash means that K  can have 

any value.   

In a positive bubble, the larger the expected log-price, the smaller tq and thus the larger is tr assuming 

that Dr  is constant: there exists a positive feedback of log-price on return, in a way qualitatively like those 

documented in laboratory experiments (Hüsler et al., 2013) and from realized as well as implied returns 

during the 2003-2007 financial bubbles preceding the 2008 crisis (Leiss et al., 2015).  Because of this 

positive feedback, during a bubble phase, the price increases/decreases faster than exponentially, since the 

return increases/decreases (recall that a constant positive return corresponds to an exponential growth). This 

phenomenon of increasing returns during bubbles has been documented in (Sornette and Zhou, 2006; 

Kaizoji and Sornette, 2010; Jiang et al., 2010; Woodard et al., 2010; Corsi and Sornette, 2014) among 

others. Transient super-exponential price growth has been proposed to be one of the hallmarks of financial 

bubbles (Sornette, 2003; Sornette et al., 2013a).   
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Quantitatively, the model in (1) is mildly explosive, similarly to (Phillips and Yu, 2010 and Phillips, Wu 

and Yu, 2009), since the return in a positive bubble increases with only the logarithm of the price, and not 

as a positive power of the price as for instance in (Corsi and Sornette, 2014).  In Section 5, we will introduce 

super-exponential exploding bubbles by allowing the probability of a crash to be a function of time and to 

depend upon the mispricing.  In that case, we can also generate finite-time singularities (Sornette and 

Cauwels, 2015) as 1t  . 

In the risk-neutral framework, the Rational Expectation condition is ln t
t f

t

N
E r

p

  
  

  
 , where   stands 

for the risk-neutral expectation operator and fr   is the risk-free rate, which takes the place of 𝑟஽ in the risk-

neural case.  Then we have  

 

   

 

ln 1 ln

ln
1

t
t t t f

t

f

t t

N
E r K q r

p

r

r K q

  




  
     

  


 




  (4) 

In the absence of crashes ( 0   ) , tr  reduces to the risk-free rate fr , as it should in risk-neutral world.  

During a positive bubble, q
t
1 with 0K  , tr   is significantly larger than fr , directly as a result of the 

existence of crashes.  Thus, tr  remunerates the investors in excess of the risk-free rate in order to 

compensate them for taking the risk of being invested in the risky asset that is susceptible to crashes.  During 

a negative bubble, 1tq  , the rally compensates the investor for being invested in a declining risky asset.  

Note that, the larger the probability   of a crash, the larger tr .  Moreover, the crash risk premium t fr r  

is an increasing function of the amplitude  ln tq  of the bubble over the normal price  0 expt NN p r t

as is the rally premium f tr r .   

 

2.4 Stationarity and co-integration with the normal price 
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Proposition 2:  Given the bubble model defined by (1) with the RE condition defined by (2) and (3), we 

have 

a)  1
lim ln t Dt

E p r
t

            

b)  1
lim ln t N Dt

E q r r
t

       

c)    1
lim

1t D N
t

E r K r r
t




 


                                  

d) When  , ,
1

1
lim 0

t

N D
t

r r
t  



   and ,N tr  and ,D tr  satisfy Condition 3, our bubble model 

satisfies the efficient crash Condition 2.                          

Proof in Appendix A. 

Then b) shows that tp  and tN  are co-integrated.   

We will be concerned with the case when  N Dr r   or when they vary over time with  

 , ,
1

1
lim 0

t

N D
t

r r
t  



   .  In this way, our model satisfies the first two conditions postulated in the 

beginning.  In real applications, we assume the crash probabilities and sizes to be different for positive and 

negative bubbles.   

To develop an intuitive understanding of the root mechanism behind Proposition 2, Appendix B dissects a 

simplified deterministic model of periodically collapsing bubbles with efficient crashes, which can be 

solved exactly.  As already mentioned, this exercise shows that the key ingredient is indeed the “efficient 

crash” condition, namely that the crash amplitudes are proportional to the mispricing difference between 

the bubble price and the normal price. 

 

3 Estimation of the parameters 

To test and apply our model on real data, we need to estimate several parameters including , , ,N DK r r and 

 .  We first focus on estimating K ,  , and  .  The idea is to separate the geometric random walk from 

jumps in the historical data.  When we do that, we will separate out  , meaning that a correct estimation 
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of the model makes the “true”   associated with the underlying geometric random walk component  

smaller than the apparent  computed directly from the historical data without awareness that jumps are 

present. 

A promising approach is to use realized variation and bi-power variation.  General assumptions for their 

application include: 

1. Independence of jumps and tr  . 

2. General assumptions are that the jump sizes form a normal distribution, but this can be relaxed. 

3. Jumps are independent of the log-price.  This may be true, but they may be dependent upon 

mispricing. 

4. There is at most one large jump per day. 

Huang and Tauchen (2005) design a significance test based on a relative difference for jumps using a 

parameter ,t h tz  , called the z-test, which converges to a normal distribution as the sampling frequency goes 

to infinity.  The z-test is said to perform impressively when computed daily and does an outstanding job of 

identifying the days when jumps occur.  Tauchen and Zhou (2011) suggest that, after filtering out jumps, a 

more flexible dynamic structure of the underlying jump arrival rate and jump size distribution can be 

obtained.   See also (Ait-Sahalia and Jacod 2012).  Much of the work in this area is on intra-day jumps.  

Anderson, Bollershev, and Diebold (2007) compute a significant jump and prevent possible negative values 

in computing the difference between the realized variation and the bi-power variation, which is not possible.   

This provides a means of selecting “significant” jumps daily based on a  % significance level.  These 

generally rely on intraday data to compute the jumps. 

We will be working with daily data and estimating the probability of a jump and jump size over an interval 

of d-days with d typically between 5 to 15 business days. The choice of d depends on the size and frequency 

of jumps. When more jumps are present, and the frequency is changing, a shorter size interval is used, 

whereas when jumps are milder, a longer size closer to 15 days is used. The interval size d will be projected 

into the future to determine an estimated probability and jump size on that interval consistent with our 

bubble model of equation (1).   We take a window of typically 5 years and partition it into intervals of d-

days. For each of these intervals, we will estimate the realized variance (total variation) and the bi-power 

variation (variation that is not jumps). We will then use these estimates to obtain an average jump size on 

a d-day interval in the given time window of 5 years. The choice of duration of the time window can 

however vary around 5 years and reflects the desire to have statistics that are relatively invariant.   
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We follow the basics of Jacquier and Okou (2014) in our design.   We used realized variance composed of 

continuous volatility and with the jump component embedded in the quadratic variation. They design a 

statistic based upon the studentized relative difference to test for jumps.  This is less useful here as we want 

to obtain the jump size relative to a variation between the asset price and the normal price.   Therefore, we 

want to know when a variation, ir, can be considered a jump within a specified significance level. 

Instead we use the method of Audrino and Hu (2016) to test if ir is a jump.  Whereas they use intraday data, 

we apply their method to daily data.  Let the history from time t be divided into intervals of d days and let 

there be h such intervals so that the total number of days of history is n hd .   The time t is the time for 

which we wish to determine if the next interval of d days will contain a jump.  We measure the jumps in 

each of the h intervals of d days.  We use their statistic where the denominator contains the spot volatility 

and k is taken to be 606 days and compute ,t iL  for each ir  in each of the prior 60 days. 

 , 1

1
1

1

1

i
t i k

t j t j
j

r
L

r r
k



  




 
  (5) 

Then ,t iL  converges to a Gumbel distribution as the sampling frequency tends to zero or, as in Audrino 

and Hu (2016) we have 
,max

,
t i d

d

L C
G

t i S


  . 

Therefore ir is taken to be a jump if  

 , *t i d

d

L C

S



   (6) 

where d is the number of days in an interval and dS , dC  , and 
*  are parameters from a standard Gumbel 

distribution: 
 

1

2 2log
dS

d


 ,       

 
log log log

2 log
2 2 2 log

d

d
C d

d

  
  
  

 , 

                                                           
6 We use 60 days based on testing giving reasonable results. 
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and the significance level is  *1 exp   . 

We say that ir is a jump if (6) is satisfied and define 

 
, *

,

1  if    

0  otherwise               

t i d

t i d

L C

I S


 
 




  (7) 

We define jumps relative to t and the h intervals of size d-days.  We define the indices for the lth interval 

as    1 1    for   1, 2, ...,lID i t ld i t l d l h         and so, as mentioned above, we divide the n 

days into h intervals of d days.  We associate a value l
l

l

N
q

p
  to an interval where 

  for  1lq q t ld     .  That is, lq  corresponds to the value of q  for the time  prior to the 

beginning of the lth interval.  That is the point by which we determine the asset price relative to the normal 

price to decide if the jumps in the next interval are for a positive or a negative bubble. 

We define positive (JP) and negative (JN) bubble jumps by interval as: 

 

 

 

 

,

2 2
,

,

2 2
,

, ,

2

   if   log    for some   0

         and   

   if   log

         and   

1    

         and   

l

l

l

l

l l

l i t i l
i ID

l i t i
i ID

l i t i l
i ID

l i t i
i ID

l i t i i t i
i ID i IQ

l

JP r I q

JP r I

JN r I q

JN r I

JJ r I r I

JJ

 











 

   



 



  











 

 

 
 

2 2
, ,1

  if  log
         with   

  if  log

l l

i t i i t i
i ID i IQ

t l

t

l

r I r I

ID q
IQ

q





 

 

  
 

 

  (8) 
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Thus, for each interval, we have associated the total jumps for a positive bubble, a negative bubble, and 

no bubble.  The parameter  ensures that a jump is not too close to the normal price. 

Then the crash amplitude for the lth interval for a positive bubble is  ln
l

l
l

JP

q
   and, for negative 

bubbles, it is   ln
l

l
l

JN

q
    while the continuous component of the quadratic variation is 

2
lJJ

d
 so that the 

average (used in equation (1)) for a d-days interval is  2

1

1 h

l
l

JJ
h




   .  We have that   and 

are computed from the average of the l


 and l

over those d-days crashes or rallies that occur.  The 

probability of a crash or rally is taken from the counts over when they do occur. 

We obtain , ,K   separating continuous volatility from jumps defined over d-days intervals.   

The crucial issues in applying the method is in testing the convergence and selecting the tuning parameters 

including: 

1. h: The number of intervals. 

2. d: the number of days in an interval for estimating the jump size and frequency per interval.  

3.  : the significance level  *1 exp   . 

4.   :  The tolerance for measuring closeness to the normal price. 

5. k:  the number of days to compute the spot volatility. 

Variations in the method are possible but the results obtained below with this parameterization are 

promising.  The most sensitive parameter among the five is the d days.  A little experimentation on the 

historical data rapidly determines an excellent value for d. 

We initially assume that , ,K   are independent of the mispricing with the exception that, in practice, we 

have separate ,K for positive and negative bubbles.  In Section 5, we extend the model by assuming that 

  is a function of the mispricing  ln q  and/or tr  resulting in even stronger super-exponential 

acceleration and finite time singularities. 
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We estimate the normal price rate Nr  by calibrating a pure exponential price dynamic over a large time 

window.  Ideally, that time window is prior to the beginning of the bubble.  It is a window of time when 

the stochastics of the price process are relatively stable.  In experiments, we have generally used 5 to 15 

years.  This embodies the longer-term price process.  The rate Dr  is the rate for the short-term component 

of the price.  In experiments, we have estimated it over a window of time prior to the current time, 2t , for 

a period of 0.5 to 3 years.  We do not index these rates by time here for ease of exposition but in practice 

estimate them at every d-days interval.  In a simplified version of the bubble model, we may take N Dr r . 

Demos and Sornette (2016) show for the LPPLS method that the start of the bubble is much less difficult 

to measure than the end.  We observed in experiments that the optimal investment is not very sensitive to 

the normal price estimation and therefore the start of the bubble. 

 

 

4 Optimal Investment with the Bubble Model 

4.1 Position of the problem 

The optimal investment problem is concerned with allocating a portfolio of assets today with the 

expectation of obtaining “optimal results” in the future.  The words “optimal results” can be defined in 

several ways.  For our purposes, we define “optimal results” as the optimal growth of our portfolio.  This 

is also called the method of Kelly (MacLean et. al. 2010a, MacLean and Ziemba. 2010, Thorp 2006, 2010) 

or maximizing the expected log of wealth.  The original work is given in Kelly (1956) with further 

discussion in Breiman (1961)7. 

Much has been written and researched on the method since Merton (1971).  See the compendium of papers 

in (MacLean et. al. 2010a).  Research on the method continues in the extensive work done on fractional 

Kelly strategies in continuous time with jump-diffusion processes (Davis and Lleo 2013a, 2015a, and 

2015b).  The fractional Kelly strategy means to only put a fraction of your wealth into the strategy, which 

makes the results less volatile but may not be optimal in the long-run.  Their work is developed in the 

                                                           
7 Both papers are essentially about gambling and both can also be found in MacLean et. al (2010a).  Kelly had 
originally titled the paper “Information Theory and Gambling” but this was nixed by executives as they thought it 
would reflect poorly on Bell labs. 
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context of “risk-sensitive” stochastic control, which means to put the control of the volatility of the portfolio 

in the objective function.  This can be thought of as a risk-averse utility function (Ziemba, 2003).  A simple 

example of a class of risk-averse utilities as a function of wealth w is the constant relative risk aversion 

(CRRA) class  
1

  0     =  ln  as 1
1

w
w



 




 


 . 

What we do different from Davis and Lleo is that we combine our bubble model with a discrete time Kelly 

process whereas their jumps are independent of a bubble model and their model is in continuous time. 

The impact of bubbles on optimal investment has most to do with the large losses that leveraged investors 

experience in surfing bubbles resulting in crashes; or the missed opportunities in rallies.  We seek to mitigate 

the losses and advantage the rallies while maintaining the positive properties of Kelly of maximizing the 

expected log of wealth.  We put our bubble model in the context of Kelly because it is illuminating in 

explaining the process of mitigating crashes and advantaging rallies.  For simplicity, we do this for one 

asset plus a risk-free asset because it provides clarity and easy tests of the methodology. 

We do not preclude other methods of optimal investment such as maximizing a different objective in the 

context of our bubble model with other risk constraints8.  We investigate that in subsequent work. 

4.2 Formalization and solution 

Let t  be the fraction of wealth tW allocated to the risky asset in time t  and 1 t  the allocation to the risk-

free asset with return fr .   Then 

       1 exp 1 expt t t t t f tW a r W         (9) 

where ta  has been defined in (1).  We wish to determine  *1
max

ln t
t t

t t

W
E L

W





  
  

  
.   

where tE  is the expectation conditional on the information up to time t. 

For simplicity, we use   in place of   or t  in the following and use the expected crash factor   

instead of the distribution of crash factors with probabilities i .  

                                                           
8 There is a debate on whether to include risks in the objective or as separate risk constraints.  One of the authors 
tends toward the second method and explains why in (Kreuser, 2014). 
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Define the shifted lognormal process         , exp exp expt t f t t fY s r s r       .  Then we have  

 

      

     

2

2
2

2 2

, exp exp exp
2

, exp exp 1
2

t t t f t t f

t t t t

E Y s r s r

Var Y s s

 

  

  
     

  

  
    

  

  (10) 

We use the following expression (Elton and Gruber, 1974) valid for the log-normally distributed random 

variable Y : 

 
      

  

            

2

2 2

1
ln ln ln 1

2

1 1
ln ln ln

2 2

t t

t

t t t

Var Y
E Y E Y

E Y

E Y E Y Var Y E Y

 
       
 

   

  (11) 

Then the expression for the expected log of wealth (Kelly) follows as: 

           1 ln 1 ln , ln ln ,t
t t t t t t t D t

t

W
L E E Y r E Y q r

W
    

                  
  (12)  

   We substitute (10) into (11) and use that in (12) to get an explicit expression without the expectation.  It 

is the function  tL    in (12) that we wish to maximize over t  . 

The logarithms may not be defined as real numbers for certain values of t  with non-positive log 

arguments.   We constrain the domain in the following. Define , , 1,2i t i     and ,L U
t t   by: 

 

   

 

 

 

2

1,

2

2,

,
, ,

,
, ,

exp exp ln  
2

exp exp
2

expMin
  or   if no 0 >0  

0

expMax
  or   if no 0 >0

0

t f i t D

t f t

fU
t i t

i t i t

fL
t i t

i t i t

r q r

r r

r

r





  

  

 
     

 
 

    
 

 
       

    
 

       
    

  (13) 
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The above relations express the condition that the log arguments are bounded away from zero. This gives 

us a bound for ,      0L U L U
t t t t t         .  We will show that we have a good starting point in 0   

and maximization on   will keep us away from the boundary where   ln t tE Y  .  

Then, the first term,     1 ln ,t t t tL E Y r       in expression (12) can be written as 

 

         
       

2

2

22 22
1

2
22

2

1
2ln 1 1 ln 1 1 1

2

1
2ln 1 1 ln 1 1 1

2

with  
2

f ft t t

t t t

r rz z z
t t t t

z z z
f t t t

t t f

L e e e e e e

r e e e e

z r r





   

  



                

          

  

  (14) 

If we assume a first-order approximation for the exponential and the log, we get:  

    2 2 2
1

1
1 2

2t f t tL r z z z            (15) 

Then the approximation is concave if  2 21 2 0z z    .  This convex function has a minimum value of 

2 4   at 2z   .  Therefore,  1 tL    is concave if 2 1  .  Assuming this to be the case, then we obtain 

a value of t  of 
2 2 22

z

z z  
 .  Combining both terms in  tL   we get: 
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 


   



   

   

      


   
            

   

 


   
            

   

   
           

   

  (16) 
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We could resort to estimating  tL   via a Taylor expansion as in (Levy and Markowitz, 1979).  Rather, 

we may optimize it over a region on which it is concave.  Very powerful nonlinear optimizers9 can then be 

applied. 

Proposition 3:   L   is defined and there exits A
t  and B

t such that it is a strictly concave function of 

 with    with  0A B L A B U
t t t t t t                 provided 0   or if 0   and either 

2

0
2fr r


    or  
2

ln 0
2t D fq r r


     .   

Proof: in appendix C. 

The proof of proposition 3 shows that  0 fL r  and that  L    is strictly concave around 0  under mild 

conditions.  Furthermore,     
2

1 ln
2t D f

L
r q r r

 



      


 indicating the local marginal 

directional change in L .  If we control the size of  , we can apply optimization directly to L  . 

By introducing the efficient crashes bubble model, we avoid excessive losses that are experienced in the 

normal Kelly10 process in crashes and rallies.   

In the next proposition, we estimate a refinement of the approximation of t , which also simplifies in the 

first order to the above equation (16). 

Proposition 4:   We can approximate an optimal   *arg max t tL     by   

                                                           
9 See for example optimizers linked to GAMS https://www.gams.com/ .  Alternatively, we could apply Golden 
Section search in this one-dimensional search since the function is concave. 
10 See Thorp 2006, 2010 for more on the Kelly criterion. 
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Proof in Appendix D. 

We see from Proposition (4) that an increasing crash probability (  ) or mispricing ( tq ) drives the 

allocation of the risky asset to zero, as it should.  

 

5 Dynamics 

5.1 Dynamic estimation of parameters 

Until now, we have assumed that , ,K   and Dr  are constant.  For simplicity, we will keep K  constant 

notwithstanding that it probably should be a function of tq .  Surely, the crash probability   should be a 

function of  tq as observed empirically in (Sornette and Zhou, 2006; Sornette et al., 2009; 2010; Woodard 

et al., 2010).  The rate Dr will also change over time. If we had a good estimate of Dr and tr , we could 

compute the crash probability  dynamically directly from the RE condition equation (3). 
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In this section, we want to suggest how we might estimate each of , ,t D tr r  and use these estimates to 

obtain the best optimal 
*
t .  We suggest methods for estimating each independently and then together 

through the RE condition.  

 

5.2 Parameterization of the probability function 

Evans (2003) states that, ‘According to the rational bubble theory, as prices overshoot their fundamental 

values, there is an increase in the probability the bubble will burst. In turn, the possibility of financial loss 

increases the risk associated with the ownership of bubbling stock, thereby justifying the acceleration of its 

price’. Rationality here refers to the idea that investors are supposed to know that there is a bubble 

component in prices, but prices are guided by self-fulfilling predictions causing prices to rise.  

Xiong and Ibbotson (2013) study accelerated stock price increases and note that they are strong contributors 

of a higher probability of reversal reconciling the 2-12 months momentum phenomenon and one-month 

reversal. This is further elaborated by Ardila et al. (2016) who introduced the “acceleration” factor. 

While it is convenient to assume that the distribution   is independent of the size of mispricing, it is 

inconsistent with observed behavior, namely that the likelihood and size of a crash increases with the size 

of the mispricing induced by an accelerating price. 

We assume   is constant.  Alternatively, if we allow it to vary, we assume that it is bounded.   

Now we assume that the probability of a crash is a function of the mispricing,  tq , and seek to estimate 

the functional form. 

We have the actual return 1ln t
t t t

t

p
r r

p
 

   
 

 , and with the RE condition (3) that 

  ln

1

t t t

t
D t

r r

K q
r








 

  


  (17) 

We assume a parametric form for the probability as a function of the mispricing for a positive bubble                  

( 1q  ) and for a negative bubble ( 1q  ) of the form: 
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  
if  1  01

  1    
if  1  01

a q aq
q b

q ab


   
     

  (18) 

For a positive or negative bubble, we have 0 1aq   and  ln 0   a q a   as given above. 

If we have 1 0b   , we define   1  for  aq q b    .   The case 1 0b    results in a finite time 

singularity.  This is because when the denominator is 1 , the numerator can attain the value of the 

denominator with finite mispricing and thus in finite time.  For a value of 1  , tr  becomes infinite 

through the RE equation.  However, that never occurs as the crash probability converges to one and the 

price crashes before tr  becomes infinite. 

This family of functions provides a wide range of monotone accelerating probability functions associated 

with the mispricing and accelerating expected returns.   

Define the two-parameter function of q    

 
 ,a b

t t tr R q
  (19) 

where  

 

   

   

, ln

1

1
ln

t ta b
t t D

t

a
t

D ta
t

K q
R q r

q
r K q

q b




 



 



  (20) 

where t
t

t

N
q

p
  .  We drop the subscript t and superscript a,b and consider R as a function of q:  R q . The 

following Proposition summarizes important properties of and R(q). 

Proposition 5:  For a positive ( 0a  ) or negative ( 0a  ) bubble, with  1,  0 1ab q    , we get the 

following: 

a. 
0  for a positive bubble

  is  
0  for a negative bubleq

 
 

.    accelerates to one faster for a   .  
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b. 0
R

q





  for  0a   and increases as a  . 

c. For 1 0b   , we have 1   for  1/ˆ a
q q b    

d. For 1 0b    , we have 
ˆ

lim
t

tq q
r


 and  ˆR q  , but tp  because the correction 

occurs first since 1 1t   . 

Proof:  

For a positive or negative bubble, we have 0 1aq   and  ln 0   a q a  . Then  

 
1

1

aaq

q b

  


 
  (21) 
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1 0  otherwise  
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  
  (22) 
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  
        

 

  (23) 

The results follow directly from these expressions. 

QED 

Having obtained a parameterized probability function at each time, if 1 0b   , then we can obtain a 

crash probability distribution up to the finite time of a crash, ct ,  when   goes to 1. 

5.3 Calibration of the probability function 

If we could measure tr , we could compute t  directly from equations (19) and (20). Along with the 

observable prices, we assume that the parameters , , ,D N tr r K q  are known and define: 

        1

1
ln ln ln

a
t

t t t D ta
t

q
d p p r K q

q b


   


  (24) 
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We propose to calibrate the parameters a and b of the probability function (24) using weighted least squares: 
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   ln  and ln  has the same sign

ln

0  for a positive bubble and 0  for a negative bubble
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t t

t t

Min
F a b w d
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t t t t t q q

w q
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





     



 
 



  (25) 

We define 1t  as the beginning of a bubble when  ln tq  is close to zero and 2t  the time when the probability 

is being estimated (i.e. “present” time).  In practice,   consists of those time periods in a bubble where 

 ln tq  is sufficiently large as defined by the parameter  .  The reason for   and the weights iw  is that 

the fit improves as  ln tq  gets large, i.e. when a bubble is well underway. 

We are estimating tr through the RE equation.  We know that it can take a long time to estimate an expected 

return (Merton, 1980; Ambarish and Siegel, 1996).  The later reference shows that the time to get an 

estimate of the expected return to a given confidence level is a function of 

2

t fr r

 
   

 .  The reason (25) 

can work is that we have assumed that   is constant (or at least bounded) whereas tr  is accelerating.  The 

return process has normal variates contingent on no crash and the time to estimate it rapidly decreases as 

tr gets large, which gives us the rational for weighting the observations by   2
ln tq  as, the larger it gets, 

the larger is tr .  We scale F for numerical convenience. 

We do the fit over several windows of time.  If the fit is “good enough”, we assume the price process is in 

bubble phase and the resulting probability function defines the crash probability locally as a function of the 

mispricing. The solution  ,a b  gives us the probability of a crash at time t since   1

1

a
t

t

q
q

b
 




.  We use 

this probability to plug into our Kelly equation given in Proposition 4 to determine the allocation between 

the risky and riskless assets after reconciling it through the RE condition. 
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5.4 The discount rate, the normal price rate, and the expected return. 

It can happen that a negative bubble occurs when transiently 1q   or a positive bubble when 1q  .  If a 

jump related to the bubble is large enough, we can assume that the jump is to a new normal price.  We then 

redefine the start of our new normal price
1 1t tN p  .   We will investigate this further in a subsequent 

empirical study. 

The discount rate Dr  is estimated over a time window less than the window used to calculate the normal 

price.  We estimate them so that we have approximately  , ,
1

1
lim 0

t

N D
t

r r
t  



  . 

We can get a reasonable estimate directly on the expected return, tr , especially when the crash probability, 

t , is large as this signals an accelerating return.   

 

5.5 Rationalizing the parameter estimates 

We have assumed that we can estimate , ,t t Dr r  independently.  Having these estimates, we should 

rationalize them through the RE condition.   

We could look at each of , ,t t Dr r to see which can be determined to be most accurate and then use the 

RE condition to adjust the values appropriately.  If we have good estimates of t  and Dr , we could 

calculate tr  through the RE condition. 

We observe (for example Fig. 4 in Section 6) that it is often the case that prices plateau before finally 

crashing. During such a plateau, the value of tq decreases progressively as the risky asset price remains 

approximately constant while the normal price increases, steadily catching up and reducing the bubble 

component. During the plateau, the expected return tr decreases progressively to Dr .  This implies that 

t  decreases though the RE condition, but it does so slowly. In fact, t   is sticky and reflects how long 

the bubble has lasted and how strongly it has developed. Indeed, the longer and deeper the bubble, the more 

time it takes for the normal price to catch up. Moreover, there can be an adjustment of the risk-adjusted 

discount rate Dr to reflect the perceived decreased risk by investors. This (misguided) perception may lead 
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to a compensation of the decrease of tr during the plateau, so that the difference  t Dr r  may remain 

essentially unchanged and therefore, by the RE condition, the crash probability remains approximately 

unchanged and large.  This scenario can happen both in a positive or a negative bubble.  The result is that 

the value of the asset allocation 
*
t  may go to zero or negative prior to a crash or to zero or positive prior 

to a rally, a behavior our investor would desire. 

Once we have good estimates of t , tr , and Dr , we calculate 
*
t  through the approximating equation, or 

via Golden Section search if one-dimensional, or we could maximize the locally concave and continuous 

function given in (12) .  

 

6 Examples on historical bubbles 

We show here several examples of the application of our method that applies the Kelly criterion in the 

context of our efficient crashes bubble model.  Each of the following examples has two graphs.  The first 

graph consists of the following plots: 

1. Optimal efficient portfolio:  consisting of an optimal allocation between the asset and the risk-free 

rate, based upon the solution obtained above (Proposition 4) using the Kelly criterion applied to 

our model that quantifies risks as a mixture of volatility and jumps. 

2. Actual price: The actual price of the risky asset.  All values and prices are measured in logs. 

3. Normal price:  Computed dynamically as explained above so it can change slope over time. 

4. BM Kelly portfolio:  The classical Kelly allocation between the asset and the risk-free rate that 

quantifies risks solely based on return volatility.  It uses the volatility computed directly from the 

historical data and not the   computed in Section 3. 

5. 60/40 portfolio:  60% in the asset and 40% in the risk-free rate. 

The second graph consists of the following plots: 

1. Lambda:  The value of the Kelly allocation 
*
t . 

2. Actual price: The actual log of the price of the risky asset.   

3. Normal price:  Computed as per the above plot. 

Rebalancing of the portfolio takes place every d-days as this was the interval size used in the estimation of 

Section 3.   Transaction costs are not considered. 
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In most cases, the maximum drawdown of our efficient portfolio is significantly smaller than that of the 

risky asset.  Maximum drawdown is measured as the maximum over the entire period. 

In all cases, the CAGR11, Sharpe, and the Calmar Ratio12 of the efficient portfolio are better than that of the 

asset. 

We limit leverage or shorting to 100% of the portfolio for either the efficient portfolio or the classical Kelly 

portfolio.  Larger values will produce more volatile solutions.  Even if these solutions have a better CAGR 

value, they will likely have a lower Calmar ratio. 

Algorithm:   

1. Estimate Nr  and Dr  as in Section 3.  

2. Estimate    and K  on historical data for a d-days interval separately for positive and for negative 

bubbles as in Section 3.  Also estimate   as in Section 3. 

3. Obtain an estimate of tr  and measure its goodness of fit.   

4. Estimate the probability function parameters  ,a b  on windows of diverse sizes.  Constraint 

0  or  0a a   depending on whether it is a positive or negative bubble.  Compute the probability 

t of a correction on the next d-days interval and measure its goodness of fit. 

5. Rationalize , ,D t tr r   through the RE condition as in Section 5.5.  If 1t   has accelerated in a bubble 

but tq  does not change much from 1tq  , keep it sticky (do not change t much from 1t  ) and 

instead adjust Dr  to satisfy the RE equation. 

6. Compute the asset allocation 
*
t  using Proposition 4 or an optimization technique. 

In all figures, the compound annualized growth rate (CAGR) and the maximum drawdown (Max 

Drawdown) are given in percent.  

Figure 1 shows the typical behavior of the efficient portfolio for the Hong Kong market.  The classical 

Kelly portfolio over-bets and then crashes farther.  The efficient portfolio begins to mitigate the crash 

                                                           
11 The compound annualized growth rate. 
12 The CAGR divided by the maximum drawdown (Young, 1991). 
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because D fr r  becomes negative when the estimated Dr  drops below the risk-free rate fr  around 13 Oct 

1997.  This in turn creates a negative 
*
t  resulting in shorting the asset. 

 

 

Fig. 1:  Hong Kong – 10 Jan 1996 to 20 Oct 1998 
 CAGR Sharpe Max Drawdown Calmar 
Actual Price -2.37 -0.19 56.40 -0.04 
Optimal Efficient Portfolio 35.65 0.70 29.16 1.22 
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Brent Oil in Figure 2 exhibits a similar behavior of the efficient portfolio, except that it reverses the 

sustained downturn and catches the rally.  The classical Kelly is even worse here as it is leveraged to the 

limit 
* 2t   .  The extended drawdown lasts from July 2008 to February 2009.  The efficient portfolio 

recovers as 
*
t  begin dropping from 2 to -1 on 26 September 2008.  During that same period, D fr r  

becomes negative for the same reason as in the Hong Kong case and is the cause for 
*
t becoming negative.  

It is not until further into 2009 that the rally size and probability become large enough to push 
*
t toward 

plus one.  All the statistics of the efficient portfolio are considerably better than that of the actual price with 

a CAGR more than trebled. 

 

 

Fig 2:  Brent Oil – 4 Jan 2005 to 3 Jan 2011 
 CAGR Sharpe Max Drawdown Calmar 
Actual Price 14.69 0.24 70.57 0.21 
Optimal Efficient Portfolio 42.94 0.70 50.85 0.84 
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In the lambda graph above, we have Brent oil peaking on 4-Jul-08.  It was on 5-Sep-08 that the value of 

lambda dropped to almost zero and then on 26-Sep-08 it went to -1 effectively shorting the asset prior to 

the major downturn.  It also began to signal an upturn after that. 

Figure 3 shows that the efficient portfolio mitigates the crash in the Dow Jones 1929 very well.  As is often 

the case, the classical Kelly overshoots a lot when leveraged.  The classical Kelly is much more leveraged 

going into the crash than the efficient portfolio.  This is because the efficient portfolio shows a high crash 

probability and large value of K  .  The lambda graph shows it dropping over several months prior to the 

crash and catching some of the rally and subsequent downturn. 

 

Fig 3:  Dow Jones 1929 – 7 Jan 1927 to 3 Jan 1931 
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 CAGR Sharpe Max Drawdown Calmar 
Actual Price 2.37 -0.08 55.37 0.04 
Optimal Efficient Portfolio 28.65 0.61 25.26 1.13 

 

 

Figure 4 shows for the S&P 500 2007 the efficient portfolio first in sync with the classical Kelly, shooting 

up when the asset price is shooting down.  Interestingly both shoot down a bit at the end when the asset 

price shoots up.  This is again because the value of D fr r becomes negative and stays there throughout 

the duration of the period.     The classical Kelly is similar except it is a little slow to catch the upturn.  The 

window for computing Dr is one year.  This is too long to catch the upturn at the end for either the efficient 

portfolio or the classical Kelly.  Therefore, they both turn down a bit despite the asset rallying.  The extended 

drawdown in the asset price begins around October 2007 until March 2009.   
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Fig 4:  S&P 500 2007 – 2 Jul 2007 to 12 May 2009 
 CAGR Sharpe Max Drawdown Calmar 
Actual Price -28.49 -1.31 55.22 -0.52 
Optimal Efficient Portfolio 20.05 0.59 22.83 0.88 

 

 

 

The case of MSCI Russia shown in Figure 5 is a bit different.  Both the classical Kelly and the efficient 

portfolio are leveraged to August 1997.  Only Kelly is leveraged a little more.  The problem begins in 

August 1997 when the asset price turns followed by a continuing downturn. But the efficient portfolio can 

hedge that because the crash probability jumps up along with a substantial increase in the value of K and 
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 ln tq . The classical Kelly is again too highly leveraged although it is doing better before the downturn.  

The efficient portfolio continues outperforming on the downturn and over a two year period outperforms 

by a factor of 10.  The result is that the optimal efficient portfolio has a significantly higher CAGR and 

Calmar than the asset price.  Of course, if we had stopped measuring in September 1997, the classical Kelly 

would have beaten all.   But that is just the point of the efficient portfolio to beat out the other methods over 

crashes and rallies.   

 

 

Fig 5:  MSCI Russia – 2 Jan 1997 to 1 Jan 1999 
 CAGR Sharpe Max Drawdown Calmar 
Actual Price -51.65 -0.60 92.66 -0.56 
Optimal Efficient Portfolio 63.51 0.74 64.73 0.98 
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Figure 6 for Gold shows another interesting example.  The efficient portfolio is essentially shorting Gold 
the entire period.    One of the results of that is a significantly reduced drawdown and subsequently improved 
Calmar over the asset price.  It is important to note that the performance in this case has much to do with 
computing the dynamic normal price. 

 

Fig 6:  Gold – 11 Jan 2013 to 30 Jun 2017 
 CAGR Sharpe Max Drawdown Calmar 
Actual Price -6.55 -0.54 35.91 -0.18 
Optimal Efficient Portfolio 8.02 0.38 19.91 0.40 
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Figure 7 shows the results for the S&P 500 over a 30 year period from 17 May 1988 to 16 May 2018..  In 

this case, the efficient portfolio is leveraged more than the classical Kelly because the crash probability and 

size, K , increase over time.   The result is a significant Calmar difference between the classical Kelly and 

the efficient portfolio.  The efficient portfolio has a significantly better CAGR than the asset. The efficient 

portfolio nicely avoided some corrections and did catch some rallies. 
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Fig 7:  S&P 500 30 years: 17-May-1988 to 16-May-2018. 
 CAGR Sharpe Max Drawdown Calmar 
Actual Price 7.89 0.40 52.65 0.15 
Optimal Efficient Portfolio 12.00 0.46 41.61 0.29 

 

 

 

However, it looks like the efficient portfolio underperforms the asset for most of the first 10 years.  Holding 

the estimation parameters for 30 years is not something we would suggest in practice.  We reran the first 

ten years with a modest change on one of the parameters.  The only difference between this run and the 30-

year run was in lengthening the estimation window to calculate the parameter Dr  from one year to four 

years.  The result is given in Figure 8.  There we see the efficient portfolio outperforming and keeping up 

with the Kelly portfolio in a raising market. 
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                                        Fig 8:  S&P 500 10 years: 16-May-1988 to 15-May-1998. 

 

The following table summarizes the differences between the efficient portfolio and the asset price over the 

seven analyzed time series.  There are no negative values in the table. 

 

Table of Differences:  Efficient portfolio value minus asset price value 

Problem CAGR Sharpe Drawdown 1   Calmar 
Hong Kong 38.02 0.89 27.24 1.26 
Brent Oil 28.25 0.46 19.72 0.63 
DJ 1929 26.28 0.69 30.11 1.09 
S&P 500 2007 48.54 1.9 32.39 1.40 
Russia 1997 63.51 0.74 64.73 0.98 
Gold 14.57 0.92 16.00 0.58 
S&P 500 30 year 4.11 0.06 11.04 0.14 
Average 39.28 0.89 23.49 0.95 
Notes: 

1. The difference in drawdown is asset price drawdown value minus efficient portfolio drawdown value. In 
all cases the larger the value the better is the efficient portfolio. 

 

 

7 Conclusions and further work 
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We have proposed a rational expectations bubble model with efficient crashes and have shown it to be 

consistent with many concepts usually invoked in classical bubble models.  We have evaluated the bubble 

model by showing that, in combination with an optimal investment methodology, it can perform well on 

historical data and on bubbles.  Furthermore, it compared favorably to other portfolio methods such as the 

classical Kelly and a 60/40 portfolio as part of our evaluation.   

There are obvious improvements in the methodology that can be made.  Most important is the 

rationalization of the dynamic discount rate, crash probability, and the expected return through the rational 

expectations equation.  We may also consider the calibration of the crash size dependent upon the 

mispricing. 

Clearly, more computational evaluations should be conducted on historical data and additional forward 

testing of the method should be developed. Transaction costs need also to be added as part of the evaluation. 

On the applications side, the methodology can be extended to a multi-asset version.  This will include 

investigating other optimal investment methods than Kelly. 

On the theoretical side, we may wish to develop a continuous time version of the bubble model and method. 

The proposed existence of efficient crashes may provide explanations for some of the existing pricing 

anomalies in the empirical literature.  

 

 

Appendix A:  

Proposition 2:  Given the bubble model defined by (1), with the RE condition defined by (2) and (3), and 

which satisfies the efficient crash condition, we have 

a)  1
lim ln t Dt

E p r
t

     

b)  1
lim ln t N Dt

E q r r
t

      

c)    1
lim

1t D N
t

E r K r r
t




 


 

d) When  , ,
1

1
lim 0

t

N D
t

r r
t  



   and ,N tr  and ,D tr  satisfy Condition 3, our bubble model 

satisfies the efficient crash Condition 2. 
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Proof: 

First, note that these three results are consistent with (3).  We assume, without loss of generality that 

0 0 1p q  .  

By (3), we have     1ln lnt t DE p E p r         , which is the RE condition. 

So   ln t DE p tr    and a) follows. 

We have from the definition of tq  that       0ln ln lnt N tE q p tr E p           

And from (3) (RE condition) we have    1ln lnt t DE p E p r          

Therefore, we have 

       
 

0 1

1

ln ln 1 ln

ln

t N N t D

t N D

E q p r t r E p r

E q r r





           
    

  

And so    ln  t N DE q t r r     . 

The results for b) follows. 

We have from (4) that     ln

1
t

t D

KE q
E r r




 


  

And using the result for b) gives c). 

We get d) by letting  expt t NB a r   and applying Khintchin’s proof for the Weak Law of Large 

Numbers. 

QED 

Appendix B: Simplified deterministic model of periodically collapsing bubbles with efficient crashes 
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Let Y
t
: ln p

t
N  where p

t
N

 is the normal price process p
t
N  p

0
exp(r

N
t) . We take p

0
1with no loss 

of generality. To simplify, we assume N Dr r  and present only the case of a positive bubble. However, we 

stress that the model can equally handle negative bubbles. 

 We imagine the simplified process decomposed in discrete time intervals of duration T. Let X
t
: ln p

t  
be the logarithm of the price process. The process starts at time t=0 for which X

0
: ln p

0   0 . For times 

between 0 to T-, the price grows at the return r  r
N  as p

t
 p

0
exp(rt) . At time T, the excess return is 

ln
௣೅

ୣ୶୮ (௥ಿ்)
. Then, a crash occurs with certainty with amplitude k times this excess return, with k 1. This 

is the specialization of the rule in (1) of our simplified model for the crash amplitude controlled by the 

mispricing ratio qt . From T+ to 2T-, the price grows again at the rate r  r
N . At time 2T, it crashes again 

with the amplitude 𝑘 ln
௣మ೅

ୣ୶୮ (ଶ௥ಿ்)
  and so on.  

 

Figure B1: schematic representation of the price process, which grows instantaneously at the growth rate r  r
N and 

crashes periodically with an amplitude 𝑘 ln
௣೟

ୣ୶୮ (௥ಿ௧)
 proportional with a coefficient k ≤1 to the mispricing with 
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respect to the average fundamental price process with return r
N . This “efficient crash” condition ensures that the 

long-term growth is given by rN . 

In terms of X
t
: ln p

t and Y
t
: ln p

t
N  and, changing the time scale in units of T, so that t= 0, T, 2T, 

3T, … corresponds to t=0, 1, 2, 3, …, this model can be written as follows: 

(B1) X
t1
 X

t
 r T  k X

t
Y

t   

(B2) Y
t1
Y

t
 r

N
T  

This yields 

(B3) X
t1
 (1 k)X

t
 r T  k(r

N
T )t  

(B4)  Y
t
 (r

N
T )t  

Expression (B4) is the trivial recovery that the log-price of the normal process increases by r
N
T over each 

period T.  

For perfectly “efficient” crashes that bring back regularly the price at exactly the normal price at the instants 
nT, n=1, 2,…, the coefficient k is then exactly equal to 1. For k=1, expression (B3) simplifies to 𝑋௧ = 𝑟 ഥ𝑇 +

(𝑟ே𝑇) 𝑡, which grows with the normal price at the same growth rate rN, up to a translation due to the transient 
from time 0 to T. 

For k<1, the solution is less obvious and needs a more careful examination. The series (B3) can be solved 
using the formalism of generating probability function (GPF). Let us consider the general equation  

(B5) X
t
 aX

t1
t    .  

We thus have a=1-k,    r T  and    k(r
N
T ) . 

We introduce the GPF 

(B6)    P(z)  X
t

t0



 zt  ,  

Multiplying (B5) by zt and summing over t leads after some simple summations of series to the equation 
for P(z): 

(B7)      P(z)  X
0
 azP(z) 

 z

(1 z)2


 z

1 z
 , 
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whose solution is obviously 

(B8)    P(z) 
X

0

1 az


 z

(1 az)(1 z)2


 z

(1 az)(1 z)
 , 

Expanding the r.h.s. of expression (B8) in series of integer powers of z and identifying term by term with 
the definition (B6) leads to the general solution: 

(B9) X
t
 X

0
at  t(1 a)  a  at1

(1 a)2
  1 at

1 a
        . 

Let us take 0<k<1, then 0<a=1-k<1 so that at converges to 0 exponentially fast. Thus, at long times, (B9) 
reduces with an excellent approximation to 

(B10)  X
t
 t(1 a)  a

(1 a)2
  1

1 a
       . 

This solution (B10) can be checked by replacing directly in equation (B5). One can also use a simpler route 
than the full generating probability function formalism, which consists in searching for a solution of the 
form 𝑋௧ = 𝑚𝑡 + 𝑏. Replacing in (B5) yields m=/(1-a) and b=/(1-a) – a(1-a)2, which recovers the exact 
(B10). One should note that this linear ansatz provides only the asymptotic shape of the solution, while the 
generating probability function formalism gives additionally the structure of the transient dynamics 
stemming from the initial condition. 

The return of the price is asymptotically given by  1

t
X

t
 which yields 

(B11)    lim
t

1

t
ln p

t  : lim
t

1

t
X

t
 1

1 a
 . 

With a=1-k and    k(r
N
T ), this yields that the long-term average return is equal to r

N
T when time is 

counted discretely in units of T. Thus, notwithstanding the fact that the crash is only a fraction k<1 of the 

bubble size ln
௣೟

ୣ୶୮ (௥ಿ௧)
, the long-term average return of the periodically collapsing price is equal to the return

r
N of the normal price. In other words, the price of the risky asset grows at the same long-term growth rate 

as the smooth normal price, even if it grows instantaneously as the faster rate   Nr r  . 
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Appendix C:  

Proposition 3:   L   is defined and there exits A
t  and B

t such that it is a strictly concave function of 

 with    with  0A B L A B U
t t t t t t                 provided 0   or if 0   and either 

2

0
2fr r


    or  
2

ln 0
2t D fq r r


     .   

Proof: 

As in (14),  we split  L  (dropping the t subscript on   ),   into two terms and consider the first term 

(C1) 

         
       

2

2

22 2 2
1

2
2 2

2

1
2ln 1 1 ln 1 1 1

2

1
2ln 1 1 ln 1 1 1

2

with  
2

f fr rz z z

z z z
f

f

L e e e e e e

r e e e e

z r r





   

  



                

          

  

  

Then we have: 

(C2) 
 
 

     
    

2

2

2

1
2

2 2

1 1 1 12 1

1 1 1 1 1

z z zz

z z z

e e e eeL

e e e e





 

   

    
 

      
  

And 

(C3) 

 
  

        
    

           
    

2 2

2

2 2

2

2
2

1
22

2 22 2 2

22
2 2

2 2

22
2 2

1
2

1 1

1 1 1 1 1

1 1 1

1 1 1 1 2 1 1 1 2 1

1 1 1

z

z

z z z z

z z

z z z z z z

z z

eL

e

e e e e e e

e e e

e e e e e e e e

e e e

 



 



 

 

 

   

 


 

  

              
      

            
   

      

  

Thusly 
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(C4) 

 

   2

1

1

0

2
2 21

2

0

0

1

1 1

f

z

z z

L r

L
e

L
e e e


















 




    



  

And we have for  L   that  

 

 

 

    

     

2

2

0

2
2 2

2
2

0

2
2

2

0

1 1

1 exp 1 exp 2 1
2

exp ln 1 exp 2 ln 2 1
2

f

z z

t t

i t D i t D

L r

L
e e

L
r r e

q r q r e









 


 


   








   



                    
                  

  

QED 
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Appendix D:  

Proposition 4:   We can approximate an optimal *
t  by   

 

     

 
  

 
   

  

2

*
2 2

2 3

2 2 2
2

4
2 2

3

1
2

1 1 1

with

exp

exp ln

1

2 1

3
1

4

f

t D f

D
D

A B H H

A r r

B K q r r

D A B

H A B D

H A B




 

 

  

 

 


     

 

  

  

   

  



 





 

  

 

  

We can further approximate A , B , and D   by 1 fA r r   ,   1 ln t D fB K q r r    , and 

1 D fD r r    so that we have using      2 22 1 1 3 lnf t D fA B D r r K q r r             that 

yields 

 
     

2

*
2 22

2

1 ln

D f

f t D f

r r

r r K q r r




  

 


     
  

Proof: 

From (9) and (10), we have: 

(D1) 

        

     
     

1

2

2

 ln ln exp 1 exp 1

1
ln exp 1 exp 1 exp

22

 ln exp 1 exp 1 exp
22

t
t f t t t

t

f t

f t

w
L E E r a

w

r A d

r B d

  

   


   












              
             
            








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And by the RE condition: 

(D2) 1 D fD r r      

As 
tr  can be large, we use the following second order expansions for log and exponential: 

(D3) 

     

 

2

2

1
ln 1 1      1 1,   0

2

exp 1
2

x x x x x

x
x x

      

  
   

Because of (13), the log arguments are bounded away from zero, and then the expressions (12) becomes: 

(D4) 

1

2 2 2

2 2 2

ln

1
ln 1 1 1 exp

2 22

ln 1 1 1 exp
2 22

t

t

t

t

f

w
E

w

A d

B d

r

     


     












  
  

  
      

                  
      

                   










   

We expand the integrand using:  

(D5) 

 

2

/2

0                      odd
1

exp     !
2     even22

/ 2 !

m
m

m

d m
m

m

 









     
  


    

which gives for the first integrand: 

(D6) 

2 2 2

2
2 2 2 2 2

2

1
ln 1 1 1 exp

2 22

1 1
1 1 1 1 exp

2 2 2 22

t

t t

A d

A A d

    


        










      
                  

                          
          









     

Expanding the first integrand and dropping the subscript t gives: 
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Therefore, the first integrand is given by: 

(D8) 
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The second integrand is of the same form so that we have: 
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The approximation is a strictly concave function if      2 2

2 31 1 1 0A B H H         .  Assuming 

this to be the case, we set
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